Approaches (Part Fifteen)

LNAV, LNAV/VNAV and Circling Minimums

There are some RNAV procedures with lower non-precision LNAV minimums [Figure 4-17] than vertically-guided LNAV/VNAV minimums. Circling procedures found on the same approach chart may also have lower minimums than the vertically-guided LNAV/VNAV procedure. Each RNAV procedure is evaluated independently and different approach segments have differing required obstacle clearance (ROC) values, obstacle evaluation area (OEA) dimensions and final segment types. Figure 4-18 explains the differences.

Figure 4-17. Example of LNAV and Circling Minima lower than LNAV/VNAV DA. Harrisburg International RNAV (GPS) Runway 13.

Figure 4-17. Example of LNAV and Circling Minima lower than LNAV/VNAV DA. Harrisburg International RNAV (GPS) Runway 13.

Figure 4-18. Explanation of Minima.

Figure 4-18. Explanation of Minima.

Airport/Runway Information

Another important piece of a thorough approach briefing is the discussion of the airport and runway environment. A detailed examination of the runway length (this must include the A/FD section of the CS for the landing distance available), the intended turnoff taxiway, and the route of taxi to the parking area, are all important briefing items. In addition, runway conditions should be discussed. The effect on the aircraft’s performance must be considered if the runway is contaminated.

 

FAA approach charts include a runway sketch on each approach chart to make important airport information easily accessible to pilots. In addition, at airports that have complex runway/taxiway configurations, a separate full-page airport diagram is published.

The airport diagram also includes the latitude/longitude information required for initial programming of FMS equipment. The included latitude/longitude grid shows the specific location of each parking area on the airport surface for use in initializing FMS. Figure 4-19 shows the airport sketch and diagram for Chicago-O’Hare International Airport (KORD).

Figure 4-19. Airport sketch and diagram for Chicago O'Hare International.

Figure 4-19. Airport sketch and diagram for Chicago O’Hare International.

Pilots making approaches to airports that have this type of complex runway and taxiway configuration must ensure that they are familiar with the airport diagram prior to initiating an instrument approach. A combination of poor weather, high traffic volume, and high ground controller workload makes the pilot’s job on the ground every bit as critical as the one just performed in the air.

 

Instrument Approach Procedure (IAP) Briefing

A thorough instrument approach briefing greatly increases the likelihood of a successful instrument approach. Most Part 121, 125, and 135 operators designate specific items to be included in an IAP briefing, as well as the order in which those items are briefed.

Before an IAP briefing can begin, flight crews must decide which procedure is most likely to be flown from the information that is available to them. Most often, when the flight is being conducted into an airport that has ATIS information, the ATIS provides the pilots with the approaches that are in use. If more than one approach is in use, the flight crew may have to make an educated guess as to which approach will be issued to them based on the weather, direction of their arrival into the area, any published airport NOTAMs, and previous contact with the approach control facility. Aircrews can query ATC as to which approach is to be expected from the controller. Pilots may request specific approaches to meet the individual needs of their equipment or regulatory restrictions at any time and ATC will, in most cases, be able to accommodate those requests, providing that workload and traffic permit.

If the flight is operating into an airport without a control tower, the flight crew is occasionally given the choice of any available instrument approach at the field. In these cases, the flight crew must choose an appropriate approach based on the expected weather, aircraft performance, direction of arrival, airport NOTAMs, and previous experience at the airport.

Navigation and Communication Radios

Once the anticipated approach and runway have been selected, each crewmember sets up their side of the flight deck. The pilots use information gathered from ATIS, dispatch (if available), ATC, the specific approach chart for the approach selected, and any other sources that are available. Company regulations dictate how certain things are set up and others are left up to pilot technique. In general, the techniques used at most companies are similar. This section addresses two-pilot operations. During single-pilot IFR flights, the same items must be set up and the pilot should still do an approach briefing to verify that everything is set up correctly.

The number of items that can be set up ahead of time depends on the level of automation of the aircraft and the avionics available. In a conventional flight deck, the only things that can be set up, in general, are the airspeed bugs (based on performance calculations), altimeter bug (to DA, DH, or MDA), go around thrust/power setting, the radio altimeter bug (if installed and needed for the approach), and the navigation/communication radios (if a standby frequency selector is available). The standby side of the PF navigation radio should be set to the primary NAVAID for the approach and the PM navigation radio standby selector should be set to any other NAVAIDs that are required or available, and as dictated by company procedures, to add to the overall situational awareness of the crew. The ADF should also be tuned to an appropriate frequency as required by the approach, or as selected by the crew. Aircrews should, as much as possible, set up the instruments for best success in the event of a vacuum or electrical failure. For example, if the aircraft will only display Nav 1 on battery or emergency power, aircrews should ensure that Nav 1 is configured to the primary NAVAID for the final approach to be flown.

 

Flight Management System (FMS)

In addition to the items that are available on a conventional flight deck aircraft, glass flight deck aircraft, as well as aircraft with an approved RNAV (GPS) system, usually give the crew the ability to set the final approach course for the approach selected and many other options to increase situational awareness. Crews of FMS equipped aircraft have many options available as far as setting up the flight management computer (FMC), depending on the type of approach and company procedures. The PF usually programs the FMC for the approach and the PM verifies the information. A menu of available approaches is usually available to select from based on the destination airport programmed at the beginning of the flight or a new destination selected while en route.

The amount of information provided for the approach varies from aircraft to aircraft, but the crew can make modifications if something is not pre-programmed into the computer, such as adding a MAP or even building an entire approach for situational awareness purposes only. The PF can also program a VNAV profile for the descent and LNAV for segments that were not programmed during preflight, such as a standard terminal arrival route (STAR) or expected route to the planned approach. Any crossing restrictions for the STAR might need to be programmed as well. The most common crossing restrictions, whether mandatory or “to be expected,” are usually automatically programmed when the STAR is selected, but can be changed by ATC at any time. Other items that need to be set up are dictated by aircraft-specific procedures, such as autopilot, auto-throttles, auto-brakes, pressurization system, fuel system, seat belt signs, anti-icing/ deicing equipment, and igniters.