• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

Flight Literacy

Flight Training Educational Materials

  • Home
  • Basic Flight Training
    • Basic Aircraft Flight
    • Aeronautical Knowledge
    • Airplane Ownership – General Aviation Information
  • Advanced Flight Training
    • Instrument Flight Rules
    • Instrument Procedures
    • Flight Navigation
    • Aircraft Weight and Balance
    • Advanced Avionics
    • Risk Management
    • Aviation Instructor Training
    • Glider Flying
    • Weight-Shift Control Aircraft Flight
    • Helicopter Flight Training
    • Advisory Circulars
  • Training Aids
  • Tip Jar

Instrument Procedures

Airborne Navigation Databases (Part Three)

Filed Under: Airborne Navigation Databases

Path and Terminator Limitations

How a specific RNAV system deals with Path and Terminators is of great importance to pilots operating with airborne navigation databases. Some early RNAV systems may ignore this field completely. The ILS or LOC/ DME RWY 3 approach at Durango, Colorado, provides an example of problems that may arise from the lack of path and terminator capability in RNAV systems. Although approaches of this type are authorized only for sufficiently equipped RNAV systems, it is possible that a pilot may elect to fly the approach with conventional navigation, and then re-engage RNAV during a missed approach. If this missed approach is flown using an RNAV system that does not use Path and terminator values or the wrong leg types, then the system will most likely ignore the first two legs of the procedure. This will cause the RNAV equipment to direct the pilot to make an immediate turn toward the Durango VOR instead of flying the series of headings that terminate at specific altitudes as dictated by the approach procedure. [Figure 6-28]

Pilots must be aware of their individual systems Path and Terminator handling characteristics and always review the manufacturer’s documentation to familiarize themselves with the capabilities of the RNAV equipment they are operating. Pilots should be aware that some RNAV equipment was designed without the fly-over capability which can cause problems for pilots attempting to use this equipment to fly complex flightpaths in the departure, arrival, or approach environments.

Figure 6-28. ILS or LOC/DME RWY 3 in Durango, Colorado.
Figure 6-28. ILS or LOC/DME RWY 3 in Durango, Colorado.

Role of the Database Provider

Compiling and maintaining a worldwide airborne navigation database is a large and complex job. Within the United States, the FAA sources give the database providers information, in many different formats, which must be analyzed, edited, and processed before it can be coded into the database. In some cases, data from outside the United States must be translated into English so it may be analyzed and entered into the database. Once the data is coded, it must be continually updated and maintained.

Once the FAA notifies the database provider that a change is necessary, the update process begins. The change is incorporated into a 28-day airborne database revision cycle based on its assigned priority. If the information does not reach the coding phase prior to its cutoff date (the date that new aeronautical information can no longer be included in the next update), it is held out of revision until the next cycle. The cutoff date for aeronautical databases is typically 21 days prior to the effective date of the revision.

The integrity of the data is ensured through a process called cyclic redundancy check (CRC). A CRC is an error detection algorithm capable of detecting small bit-level changes in a block of data. The CRC algorithm treats a data block as a single, large binary value. The data block is divided by a fixed binary number called a generator polynomial whose form and magnitude is determined based on the level of integrity desired. The remainder of the division is the CRC value for the data block. This value is stored and transmitted with the corresponding data block. The integrity of the data is checked by reapplying the CRC algorithm prior to distribution.

 

Role of the Avionics Manufacturer

When avionics manufacturers develop a piece of equipment that requires an airborne navigation database, they typically form an agreement with a database provider to supply the database for that new avionics platform. It is up to the manufacturer to determine what information to include in the database for their system. In some cases, the navigation data provider has to significantly reduce the number of records in the database to accommodate the storage capacity of the manufacturer’s new product, which means that the database may not contain all procedures.

Another important fact to remember is that although there are standard naming conventions included in the ARINC 424 specification, each manufacturer determines how the names of fixes and procedures are displayed to the pilot. This means that although the database may specify the approach identifier field for the VOR/DME Runway 34 approach at Eugene Mahlon Sweet Airport (KEUG) in Eugene, Oregon, as “V34,” different avionics platforms may display the identifier in any way the manufacturer deems appropriate. For example, a GPS produced by one manufacturer might display the approach as “VOR 34,” whereas another might refer to the approach as “VOR/DME 34,” and an FMS produced by another manufacturer may refer to it as “VOR34.” [Figure 6-29]

Figure 6-29. Naming conventions of three different systems for the VOR 34 Approach.
Figure 6-29. Naming conventions of three different systems for the VOR 34 Approach.

These differences can cause visual inconsistencies between chart and GPS displays, as well as confusion with approach clearances and other ATC instructions for pilots unfamiliar with specific manufacturer’s naming conventions. The manufacturer determines the capabilities and limitations of an RNAV system based on the decisions that it makes regarding that system’s processing of the airborne navigation database.

 

Users Role

Like paper charts, airborne navigation databases are subject to revision. According to 14 CFR Part 91, § 91.503, the end user (operator) is ultimately responsible for ensuring that data meets the quality requirements for its intended application. Updating data in an aeronautical database is considered to be maintenance and all Part 91 operators may update databases in accordance with 14 CFR Part 91, § 43.3(g). Parts 121, 125, and 135 operators must update databases in accordance with their approved maintenance program. For Part 135 helicopter operators, this includes maintenance by the pilot in accordance with 14 CFR Part 43, § 43.3(h).

Pilots using the databases are ultimately responsible for ensuring that the database they are operating with is current. This includes checking Notices to Airmen (NOTAM)type information concerning errors that may be supplied by the avionics manufacturer or the database supplier. The database user is responsible for learning how the specific navigation equipment handles the navigation database. The manufacturer’s documentation is the pilot’s best source of information regarding the capabilities and limitations of a specific database. [Figure 6-30]

Figure 6-30. Database rolls.
Figure 6-30. Database rolls.

Flight Literacy Recommends

Rod Machado's Instrument Pilot's Handbook -Flight Literacy recommends Rod Machado's products because he takes what is normally dry and tedious and transforms it with his characteristic humor, helping to keep you engaged and to retain the information longer. (see all of Rod Machado's Products).

Airborne Navigation Databases (Part Two)

Filed Under: Airborne Navigation Databases

Complex Route Records

Complex route records include those strings of fixes that describe complex flightpaths like standard instrument departures (SIDs), standard terminal arrival routes (STARs), and instrument approach procedures (IAPs). Like simple routes, these records contain the names of fixes to be used in the route, as well as instructions on how the route is flown.

Miscellaneous Records

There are several other types of information that is coded into airborne navigation databases, most of which deal with airspace or communications. The receiver may contain additional information, such as restricted airspace, airport minimum safe altitudes, and grid minimum off route altitudes (MORAs).

Path and Terminator Concept

The path and terminator concept is a means to permit coding of terminal area procedures, SIDs, STARs, and approach procedures. Simply put, a textual description of a route or a terminal procedure is translated into a format that is useable in RNAV systems. One of the most important concepts for pilots to learn regarding the limitations of RNAV equipment has to do with the way these systems deal with the path and terminator field included in complex route records.

The first RNAV systems were capable of only one type of navigation; they could fly directly to a fix. This was not a problem when operating in the en route environment in which airways are mostly made up of direct routes between fixes. The early approaches for RNAV did not present problems for these systems and the databases they used because they consisted mainly of DME/DME overlay approaches flown only direct point-to-point navigation. The desire for RNAV equipment to have the ability to follow more complicated flightpaths necessitated the development of the path and terminator field that is included in complex route records.

Path and Terminator Legs

There are currently 23 different leg types, or path and terminators that have been created in the ARINC 424 standard that enable RNAV systems to follow the complex paths that make up instrument departures, arrivals, and approaches. They describe to navigation avionics a path to be followed and the criteria that must be met before the path concludes and the next path begins. Although there are 23 leg types available, none of the manufactured database equipment is capable of using all of the leg types. Pilots must continue to monitor procedures for accuracy and not rely solely on the information that the database is showing. If the RNAV system does not have the leg type demanded by procedures, data packers have to select one or a combination of available lleg types to give the best approximation, which can result in an incorrect execution of the procedure. Below is a list of the 23 leg types and their uses that may or may not be used by all databases.

  • Initial fix or IF leg—defines a database fix as a point in space and is only required to define the beginning of a route or procedure. [Figure 6-5]

    Figure 6-5. Initial fix.
    Figure 6-5. Initial fix.
  • Track to a fix or TF leg—defines a great circle track over the ground between two known database fixes and the preferred method for specification of straight legs (course or heading can be mentioned on charts but designer should ensure TF leg is used for coding). [Figure 6-6]

    Figure 6-6. Track to a fix leg type.
    Figure 6-6. Track to a fix leg type.
  • Constant radius arc or RF leg—defines a constant radius turn between two databases fixes, lines tangent to the arc, and a center fix. [Figure 6-7]

    Figure 6-7. Constant radius arc or RF leg.
    Figure 6-7. Constant radius arc or RF leg.
  • Course to a fix or CF leg—defines a specified course to a specific database fix. Whenever possible, TF legs should be used instead of CF legs to avoid magnetic variation issues. [Figure 6-8]

    Figure 6-8. Course to a fix or CF leg.
    Figure 6-8. Course to a fix or CF leg.
  • Direct to a fix or DF leg—defines an unspecified track starting from an undefined position to a specified fix. [Figure 6-9]

    Figure 6-9. Direct to a fix or DF leg.
    Figure 6-9. Direct to a fix or DF leg.
  • Fix to an altitude or FA leg—defines a specified track over the ground from a database fix to a specified altitude at an unspecified position. [Figure 6-10]

    Figure 6-10. Fix to an altitude or FA leg.
    Figure 6-10. Fix to an altitude or FA leg.
  • Track from a fix from a distance or FC leg—defines a specified track over the ground from a database fix for a specific distance. [Figure 6-11]

    Figure 6-11. Track from a fix from a distance or FC leg.
    Figure 6-11. Track from a fix from a distance or FC leg.
  • Track from a fix to a distance measuring equipment (DME) distance or FD leg—defines a specified track over the ground from a database fix to a specific DME distance that is from a specific database DME NAVAID. [Figure 6-12]

    Figure 6-12. Track from a fix to a DME distance or FD leg.
    Figure 6-12. Track from a fix to a DME distance or FD leg.
  • From a fix to a manual termination or FM leg— defines a specified track over the ground from a database fix until manual termination of the leg. [Figure 6-13]

    Figure 6-13. From a fix to a manual termination or FM leg.
    Figure 6-13. From a fix to a manual termination or FM leg.
  • Course to an altitude or CA leg—defines a specified course to a specific altitude at an unspecified position. [Figure 6-14]

    Figure 6-14. Course to an altitude or CA leg.
    Figure 6-14. Course to an altitude or CA leg.
  • Course to a DME distance or CD leg—defines a specified course to a specific DME distance that is from a specific database DME NAVAID. [Figure 6-15]

    Figure 6-15. Course to a DME distance of CD leg.
    Figure 6-15. Course to a DME distance of CD leg.
  • Course to an intercept or CI leg—defines a specified course to intercept a subsequent leg. [Figure 6-16]

    Figure 6-16. Course to an intercept or CI leg.
    Figure 6-16. Course to an intercept or CI leg.
  • Course to a radial termination or CR leg—defines a course to a specified radial from a specific database VOR NAVAID. [Figure 6-17]

    Figure 6-17. Course to a radial termination or CR leg.
    Figure 6-17. Course to a radial termination or CR leg.
  • Arc to a fix or AF leg—defines a track over the ground at a specified constant distance from a database DME NAVAID. [Figure 6-18]

    Figure 6-18. Arc to a fix or AF leg.
    Figure 6-18. Arc to a fix or AF leg.
  • Heading to an altitude termination or VA leg— defines a specified heading to a specific altitude termination at an unspecified position. [Figure 6-19]

    Figure 6-19. Heading to an altitude termination or VA leg.
    Figure 6-19. Heading to an altitude termination or VA leg.
  • Heading to a DME distance termination or VD leg—defines a specified heading terminating at a specified DME distance from a specific database DME NAVAID. [Figure 6-20]

    Figure 6-20. Heading to a DME distance termination or VD leg.
    Figure 6-20. Heading to a DME distance termination or VD leg.
  • Heading to an intercept or VI leg—defines a specified heading to intercept the subsequent leg at an unspecified position. [Figure 6-21]

    Figure 6-21. Heading to an intercept or VI leg.
    Figure 6-21. Heading to an intercept or VI leg.
  • Heading to a manual termination or VM leg— defines a specified heading until a manual termination. [Figure 6-22]

    Figure 6-22. Heading to a manual termination or VM leg.
    Figure 6-22. Heading to a manual termination or VM leg.
  • Heading to a radial termination or VR leg—defines a specified heading to a specified radial from a specific database VOR NAVAID. [Figure 6-23]

    Figure 6-23. Heading to a radial termination or VR leg.
    Figure 6-23. Heading to a radial termination or VR leg.
  • Procedure turn or PI leg—defines a course reversal starting at a specific database fix and includes outbound leg followed by a left or right turn and 180° course reversal to intercept the next leg. [Figure 6-24]

    Figure 6-24. Procedure turn or PI leg.
    Figure 6-24. Procedure turn or PI leg.
  • Racetrack course reversal or altitude termination (HA), single circuit terminating at the fix (base turn) (HF), or manual termination (HM) leg types—define racetrack pattern or course reversals at a specified database fix. [Figure 6-25]

    Figure 6-25. Racetrack course reversal or HA, HF, and HM leg.
    Figure 6-25. Racetrack course reversal or HA, HF, and HM leg.

The GRAND JUNCTION FIVE DEPARTURE for Grand Junction Regional in Grand Junction, Colorado, provides a good example of different types of path and terminator legs used. [Figure 6-26] When this procedure is coded into the navigation database, the person entering the data into the records must identify the individual legs of the flightpath and then determine which type of terminator should be used.

Figure 6-26. Grand Junction Five Departure.
Figure 6-26. Grand Junction Five Departure.

The first leg of the departure for Runway 11 is a climb via runway heading to 6,000 feet mean sea level (MSL) and then a climbing right turn direct to a fix. When this is entered into the database, a heading to an altitude (VA) value must be entered into the record’s path and terminator field for the first leg of the departure route. This path and terminator tells the avionics to provide course guidance based on heading, until the aircraft reaches 6,000 feet, and then the system begins providing course guidance for the next leg. After reaching 6,000 feet, the procedure calls for a right turn direct to the Grand Junction (JNC) VORTAC. This leg is coded into the database using the path and terminator direct to a fix (DF) value, which defines an unspecified track starting from an undefined position to a specific database fix.

 

Another commonly used path and terminator value is heading to a radial (VR) which is shown in Figure 6-27 using the CHANNEL ONE DEPARTURE procedure for Santa Ana, California. The first leg of the runway 19L/R procedure requires a climb on runway heading until crossing the I-SNA 1 DME fix or the SLI R-118, this leg must be coded into the database using the VR value in the Path and Terminator field. After crossing the I-SNA 1 DME fix or the SLI R-118, the avionics should cycle to the next leg of the procedure that in this case, is a climb on a heading of 175° until crossing SLI R-132. This leg is also coded with a VR Path and Terminator. The next leg of the procedure consists of a heading of 200° until intercepting the SXC R-084. In order for the avionics to correctly process this leg, the database record must include the heading to an intercept (VI) value in the Path and Terminator field. This value directs the avionics to follow a specified heading to intercept the subsequent leg at an unspecified position.

Figure 6-27. Channel One Departure.
Figure 6-27. Channel One Departure.

The path and terminator concept is a very important part of airborne navigation database coding. In general, it is not necessary for pilots to have an in-depth knowledge of the ARINC coding standards; however, pilots should be familiar with the concepts related to coding in order to understand the limitations of specific RNAV systems that use databases.

Flight Literacy Recommends

Rod Machado's Instrument Pilot's Handbook -Flight Literacy recommends Rod Machado's products because he takes what is normally dry and tedious and transforms it with his characteristic humor, helping to keep you engaged and to retain the information longer. (see all of Rod Machado's Products).

Airborne Navigation Databases (Part One)

Filed Under: Airborne Navigation Databases

The capabilities of airborne navigation databases depend largely on the way they are implemented by the avionics manufacturers. They can provide data about a large variety of locations, routes, and airspace segments for use by many different types of RNAV equipment. Databases can provide pilots with information regarding airports, air traffic control (ATC) frequencies, runways, and special use airspace. Without airborne navigation databases, RNAV would be extremely limited. In order to understand the capabilities and limitations of airborne navigation databases, pilots must understand the way databases are compiled and revised by the database provider and processed by the avionics manufacturer. Vital to this discussion is understanding of the regulations guiding database maintenance and use.

There are many different types of RNAV systems certified for instrument flight rules (IFR) use in the National Airspace System (NAS). The two most prevalent types are GPS and the multisensory FMS. [Figure 6-2] A modern GPS unit accurately provides the pilot with the aircraft’s present position; however, it must use an airborne navigation database to determine its direction or distance from another location. The database provides the GPS with position information for navigation fixes so it may perform the required geodetic calculations to determine the appropriate tracks, headings, and distances to be flown. [Figure 6-3]

Figure 6-2. GPS with a flight route on display.
Figure 6-2. GPS with a flight route on display.

Figure 6-3. FMS display.
Figure 6-3. FMS display. [click image to enlarge]
Modern FMS are capable of a large number of functions including basic en route navigation, complex departure and arrival navigation, fuel planning, and precise vertical navigation. Unlike stand-alone navigation systems, most FMS use several navigation inputs. Typically, they formulate the aircraft’s current position using a combination of conventional distance measuring equipment (DME) signals, inertial navigation systems (INS), GPS receivers, or other RNAV devices. Like stand-alone navigation avionics, they rely heavily on airborne navigation databases to provide the information needed to perform their numerous functions.

 

Airborne Navigation Database Standardization

Beginning in the 1970s, the requirement for airborne navigation databases became more critical. In 1973, National Airlines installed the Collins ANS-70 and AINS70 RNAV systems in their DC-10 fleet, which marked the first commercial use of avionics that required navigation databases. A short time later, Delta Air Lines implemented the use of an ARMA Corporation RNAV system that also used a navigation database. Although the type of data stored in the two systems was basically identical, the designers created the databases to solve the individual problems of each system, which meant that they were not interchangeable. As the implementation of RNAV systems expanded, a world standard for airborne navigation databases was needed.

In 1973, Aeronautical Radio, Inc. (ARINC) sponsored the formation of a committee to standardize aeronautical databases. In 1975, the committee published the first standard, ARINC Specification 424, which has remained the worldwide accepted format for transmission of navigation databases.

ARINC 424

ARINC 424 is the air transport industry’s recommended standard for the preparation and transmission of data for the assembly of airborne system navigation databases. The data is intended for merging with the aircraft navigation system software to provide a source of navigation reference. Each subsequent version of ARINC 424 Specification provides additional capability for navigation systems to utilize. Merging of ARINC 424 data with each manufacturer’s system software is unique and ARINC 424 leg types provide vertical guidance and ground track for a specific flight procedure. These leg types must provide repeatable flight tracks for the procedure design. The navigation database leg type is the path and terminator concept.

ARINC 424 Specification describes 23 leg types by their path and terminator. The path describes how the aircraft gets to the terminator by flying direct (a heading, a track, a course, etc.). The terminator is the event or condition that causes the navigation computer system to switch to the next leg (a fix, an altitude, an intercept, etc.). When a flight procedure instructs the pilot to fly runway heading to 2000 feet then direct to a fix, this is the path and terminator concept. The path is the heading and the terminator is 2000 feet. The next leg is then automatically sequenced. A series of leg types are coded into a navigation database to make a flight procedure. The navigation database allows an FMS or GPS navigator to create a continuous display of navigational data, thus enabling an aircraft to be flown along a specific route. Vertical navigation can also be coded.

The data included in an airborne navigation database is organized into ARINC 424 records. These records are strings of characters that make up complex descriptions of each navigation entity. ARINC records can be sorted into four general groups: fix records, simple route records, complex route records, and miscellaneous records. Although it is not important for pilots to have in-depth knowledge of all the fields contained in the ARINC 424 records, pilots should be aware of the types of records contained in the navigation database and their general content.

 

Fix Records

Database records that describe specific locations on the face of the earth can be considered fix records. Navigational aids (NAVAIDs), waypoints, intersections, and airports are all examples of this type of record. These records can be used directly by avionics systems and can be included as parts of more complex records like airways or approaches.

Another concept pilots should understand relates to how aircraft make turns over navigation fixes. Fixes can be designated as fly-over or fly-by, depending on how they are used in a specific route. [Figure 6-4] Under certain circumstances, a navigation fix is designated as fly-over. This simply means that the aircraft must actually pass directly over the fix before initiating a turn to a new course. Conversely, a fix may be designated fly-by, allowing an aircraft’s navigation system to use its turn anticipation feature, which ensures that the proper radius of turn is commanded to avoid overshooting the new course. Some RNAV systems are not programmed to fully use this feature. It is important to remember a fix can be coded as fly-over and fly-by in the same procedure, depending on how the fix is used (i.e., holding at an initial approach fix). RNAV or GPS stand-alone IAPs are flown using data pertaining to the particular IAP obtained from an onboard database to include the sequence of all waypoints used for the approach and missed approach, except that step down waypoints may not be included in some TSO-C129 receiver databases. Included in the database, in most receivers, is coding that informs the navigation system of which WPs are fly-over or fly-by. The navigation system may provide guidance appropriately to include leading the turn prior to a fly-by waypoint; or causing over flight of a fly-over waypoint. Where the navigation system does not provide such guidance, the pilot must accomplish the turn lead or waypoint over flight manually. Chart symbology for the flyby waypoint provides pilot awareness of expected actions.

Figure 6-4. Fly-by-waypoints and fly-over-waypoints.
Figure 6-4. Fly-by-waypoints and fly-over-waypoints. [click image to enlarge]

Simple Route Records

Route records are those that describe a flightpath instead of a fixed position. Simple route records contain strings of fix records and information pertaining to how the fixes should be used by the navigation avionics.

A Victor Airway, for example, is described in the database by a series of en route airway records that contain the names of fixes in the airway and information about how those fixes make up the airway.

Flight Literacy Recommends

Rod Machado's Instrument Pilot's Handbook -Flight Literacy recommends Rod Machado's products because he takes what is normally dry and tedious and transforms it with his characteristic humor, helping to keep you engaged and to retain the information longer. (see all of Rod Machado's Products).

Improvement Plans (Part Three)

Filed Under: Improvement Plans

Electronic Flight Bag (EFB)

The electronic flight bag (EFB) is a system for pilots or crewmembers that provide a variety of electronic display, content manipulation, and calculation capabilities. Functions include, but are not limited to, aeronautical charts, documents, checklists, weight & balance, fuel calculations, moving maps, and logbooks.

EFB systems may manage information for use in the cockpit, cabin, and/or in support of ground operations and planning. The use of an EFB is unique to each aircraft operator and, depending on the type of operation, EFB use may require an authorization for use from the FAA issued as either an operations specification (OpSpec), maintenance specification (MSpec), or letter of authorization (LOA).

EFBs can be portable [Figure 5-18] or installed [Figure 5-19] in the aircraft. Portable EFBs may have a provision for securing in the cockpit for use during all phases of flight. The hardware device, whether it’s an installed avionics display or portable commercial-off-the-shelf (COTS) device, commonly referred to as a portable electronic device (PED), is not considered to be an EFB unless the hardware device hosts and actively displays either Type A or B software application(s). A non-inclusive list of Type A and B software application examples can be found in appendix 1 and 2 of FAA Advisory Circular (AC) 120-76.

Figure 5-18. Portable flight bag.
Figure 5-18. Portable flight bag.
Figure 5-19. Installed flight bag.
Figure 5-19. Installed flight bag.

The purpose, technology, and functions for EFB use are rapidly evolving. New and advanced software applications and databases beyond traditional flight bag uses continue to be developed. The FAA has published and continues to update EFB policy and guidance to educate and assist aircraft operators interested in using or obtaining an EFB authorization as appropriate. The most current editions of the following FAA guidance and policy can be accessed from the FAA’s website (http://www.faa.gov) or FAA’s Flight Standards Information Management System (FSIMS http://fsims.faa.gov).

  • AC 120-76, Guidelines for the Certification, Airworthiness, and Operational Use of Electronic Flight Bags;
  • AC 91-78, Use of Class 1 or Class 2 Electronic Flight Bag (EFB);
  • AC 20-173, Installation of Electronic Flight Bag Components;
  • FAA Order 8900.1 Volume 4, Chapter 15, § 1, Electronic Flight Bag authorization for use; and
  • FAA Order 8900.1 Volume 3, Chapter 18, § 3, Part A Operations Specifications – General
 

Access to Special Use Airspace

Special use airspace consists of airspace of defined dimensions identified by an area on the surface of the earth wherein activities must be confined because of their nature, or wherein limitations are imposed upon aircraft operations that are not a part of those activities, or both. Special use airspace includes: restricted airspace, prohibited airspace, Military Operations Areas (MOA), warning areas, alert areas, temporary flight restriction (TFR), and controlled firing areas (CFAs). [Figures 5-27 through 5-32] Prohibited and restricted areas are regulatory special use airspace and are established in 14 CFR Part 73 through the rulemaking process. Warning areas, MOAs, alert areas, and CFAs are non-regulatory special use airspace. All special use airspace descriptions (except CFAs) are contained in FAA Order JO 7400.8, Special Use Airspace, and are charted on IFR or visual charts and include the hours of operation, altitudes, and the controlling agency. [Figure 5-33]

Figure 5-27. Restricted airspace.
Figure 5-27. Restricted airspace.
Figure 5-28. Prohibited airspace.
Figure 5-28. Prohibited airspace.
Figure 5-29. Military operations area (MOA).
Figure 5-29. Military operations area (MOA).
Figure 5-30. Warning area.
Figure 5-30. Warning area.
Figure 5-31. Alert area.
Figure 5-31. Alert area.
Figure 5-32. Temporary flight restriction (TFR).
Figure 5-32. Temporary flight restriction (TFR).

Figure 5-33. Special use airspace charted on an aeronautical chart.
Figure 5-33. Special use airspace charted on an aeronautical chart. [click image to enlarge]
The vertical limits of special use airspace are measured by designated altitude floors and ceilings expressed as flight levels or as feet above mean sea level (MSL). Unless otherwise specified, the word “to” (an altitude or flight level) means “to and including” (that altitude or flight level). The horizontal limits of special use airspace are measured by boundaries described by geographic coordinates or other appropriate references that clearly define their perimeter. The period of time during which a designation of special use airspace is in effect is stated in the designation.

 

Civilians Using Special Use Airspace

The FAA and the Department of Defense (DOD) work together to maximize the use of special use airspace by opening such areas to civilian traffic when they are not being used by the military. The military airspace management system (MAMS) keeps an extensive database of information on the historical use of special use airspace, as well as schedules describing when each area is expected to be active. MAMS transmits the data to the special use airspace management system (SAMS), an FAA program that provides current and scheduled status information on special use airspace to civilian users. The two systems work together to ensure that the FAA and system users have current information on a daily basis. This information is available 24 hours a day at the following link: http://sua.faa.gov. The website merges information for both special use airspace and TFR making it a single comprehensive source to review airspace closure information.

Figure 5-34. FAA website providing information for both special use airspace and temporary flight restrictions.
Figure 5-34. FAA website providing information for both special use airspace and temporary flight restrictions.

The website contains two tabbed pages, List and Map, that display the scheduling and Notice to Airmen (NOTAM) data for SUAs, military training routes (MTRs), and TFRs. [Figure 5-34] By default, the List tabbed page displays all airspace types, and the Map tabbed page displays all airspace types apart from MTRs and ATC Assigned Airspaces (ATCAAs). Both the List and Map tabbed pages can be filtered to display specific data for an airspace name, type, or group. Groups include SUA, MTR, or TFR. The Map tabbed page provides a graphical depiction of scheduled airspaces that may be customized using a fly-out menu of map display options. This tabbed page also contains look-up functionality that allows a user to locate one or more airports within the map. [Figures 5-35 through 5-38]

Figure 5-35. Center locations and information available to pilots through the FAA website.
Figure 5-35. Center locations and information available to pilots through the FAA website.
Figure 5-36. State information available to pilots through the FAA website.
Figure 5-36. State information available to pilots through the FAA website.
Figure 5-37. Map layer options and information available to pilots through the FAA website.
Figure 5-37. Map layer options and information available to pilots through the FAA website.
Figure 5-38. Airport information available to pilots through the FAA website.
Figure 5-38. Airport information available to pilots through the FAA website.

Additional navigation features are included which allows the user to pan in any direction by dragging the cursor within the map. A permalink feature is also available that enables a user to bookmark a customized set of map layers that can easily be added to their Internet browser favorites list. Once a specific set of customized map layers has been bookmarked, a user may open that customized map display using the favorites option within their browser menu. The List tabbed page allows a user to view all SUA and MTR scheduling data and NOTAM text for a TFR. This text may be viewed for each NOTAM ID by expanding the NOTAM text section within the List grid or clicking the NOTAM ID to open a TFR Details page. The TFR Details page displays NOTAM text in a form layout for easy reading and includes a mapped image and sectional navigation map if available for the TFR.

Flight Literacy Recommends

Rod Machado's Instrument Pilot's Handbook -Flight Literacy recommends Rod Machado's products because he takes what is normally dry and tedious and transforms it with his characteristic humor, helping to keep you engaged and to retain the information longer. (see all of Rod Machado's Products).

Improvement Plans (Part Two)

Filed Under: Improvement Plans

Benefits of NextGen

The implementation of NextGen will allow pilots and dispatchers to select their own direct flightpaths, rather than follow the existing Victor, Jet, and LF/MF airways. Each aircraft will transmit and receive precise information about the time at which it and others will cross key points along their paths. Pilots and air traffic managers on the ground will have the same precise information transmitted via data communications.

Major demand and capacity imbalances will be worked collaboratively between FAA air traffic managers and flight operations. The increased scope, volume, and widespread distribution of information by SWIM will improve decision- making and let more civil aviation authorities participate. The impact of weather on flight operations will be reduced through the use of improved information sharing, new technology to sense and mitigate the impacts of the weather, and to improve weather forecasts and decision-making. Better forecasts, coupled with greater automation, will minimize airspace limitations and traffic restrictions.

The new procedures of NextGen will improve airport surface movements, reduce spacing and separation requirements, and better manage the overall flows into and out of busy airspace, as well as provide maximum use of busy airports. [Figure 5-11] Targeting NextGen at the whole of the NAS, rather than just the busiest airports, will uncover untapped capacity across the whole system. During busy traffic periods, NextGen will rely on aircraft to fly precise routes into and out of many airports to increase throughput. For more information on NextGen, visit www.faa.gov/nextgen.

Figure 5-11. NextGen improves airport surface movements, reduces spacing and separation requirements, and better manages the overall flows into and out of busy airports.
Figure 5-11. NextGen improves airport surface movements, reduces spacing and separation requirements, and better manages the overall flows into and out of busy airports.

Head-Up Displays (HUD)

As aircraft became more sophisticated and electronic instrument landing systems (ILS) were developed in the 1930s and 1940s, it was necessary while landing in poor weather for one pilot to monitor the instruments to keep the aircraft aligned with radio beams while the second pilot divided time between monitoring the instruments and the outside environment. The pilot monitoring reported the runway environment in sight and the flying pilot completed the approach visually. This is still the standard practice used for passenger carrying aircraft in commercial service while making ILS landings.

 

As single-piloted aircraft became more complex, it became very difficult for pilots to focus on flying the aircraft while also monitoring a large number of navigation, flight, and systems instruments. To overcome this problem, the head-up display (HUD) was developed. By showing airspeed, altitude, heading, and aircraft attitude on the HUD glass, pilots were able to keep their eyes outside of the flight deck rather than have to continuously scan from outside to inside to view the flight instruments. [Figure 5-12] Collimators make the image on the glass appear to be far out in front of the aircraft so that the pilot need not change eye focus to view the relatively nearby HUD. Today’s head-up guidance systems (HGS) use holographic displays. [Figure 5-13] Everything from weapons status to approach information can be shown on current military and civilian HGS displays.

Figure 5-12. Head-up guidance system (HGS).
Figure 5-12. Head-up guidance system (HGS).
Figure 5-13. HGS using a holographic display.
Figure 5-13. HGS using a holographic display.

Synthetic and Enhanced Vision Systems

Synthetic Vision System (SVS)

A synthetic vision system (SVS) is an electronic means to display a synthetic vision image of the external scene topography to the flight crew. [Figure 5-14] It is not a real-time image like that produced by an enhanced flight vision system (EFVS). Unlike EFVS, SVS requires a terrain and obstacle database, a precise navigation solution, and a display. The terrain image is based on the use of data from a digital elevation model (DEM) that is stored within the SVS. With SVS, the synthetic terrain/vision image is intended to enhance pilot awareness of spatial position relative to important features in all visibility conditions. This is particularly useful during critical phases of flight, such as takeoff, approach, and landing where important features such as terrain, obstacles, runways, and landmarks may be depicted on the SVS display. [Figure 5-15] During approach operations, the obvious advantages of SVS are that the digital terrain image remains on the pilot’s display regardless of how poor the visibility is outside. An SVS image can be displayed on either a head-down display or head-up display (HUD). Development efforts are currently underway that would combine SVS with a real-time sensor image produced by an EFVS. These systems will be known as Combined Vision Systems (CVS).

Figure 5-14. A synthetic vision system (SVS) is an electronic means to display a synthetic vision image of the external scene topography to the flight crew to assist during takeoffs, landings, and en route operations.
Figure 5-14. A synthetic vision system (SVS) is an electronic means to
display a synthetic vision image of the external scene topography to the
flight crew to assist during takeoffs, landings, and en route operations.
Figure 5-15. An aircraft on an approach equipped with a SVS.
Figure 5-15. An aircraft on an approach equipped with a SVS.
 

Synthetic Vision Guidance System (SVGS)

SVGS is a combination of flight guidance display technology and high precision position assurance monitors. The SVGS flight instrument display provides a continuous, geospatially correct, database driven, computer-generated synthetic depiction of the nearby topography, including obstacles, and a display of the landing runway. The SVGS display may be implemented on a head down Primary Flight Display, and/or a Head-Up Display (HUD). SVGS includes additional symbology, integrity and performance monitors and annunciations that enable low visibility operations. These additional monitors assure an accurate depiction of the external scene. An SVGS differs from an EFVS in that it does not produce a real-time image of the external scene. SVGS may not be used in lieu of natural vision. SVGS is intended to be used to increase situational awareness on the straight-in final approach segment of published instrument approaches and requires Special Authorization.

Figure 5-16. Enhanced and synthetic vision displayed on primary flight displays.
Figure 5-16. Enhanced and synthetic vision displayed on primary flight displays.

Enhanced Flight Vision System (EFVS)

For an in-depth discussion regarding Enhanced Flight Vision Systems, see the Approaches Section as well as AC 90-106 (current version).

Combined Vision System Technology

The FAA’s NextGen program will transform the NAS to accommodate a projected three-fold increase in air operations in the coming decade. Technological and systemic changes are being developed to significantly increase the capacity, safety, efficiency, and security of air operations in the NAS. The FAA will continue to evaluate, standardize and regulate emerging and enhanced technologies to ensure their safe and advantageous use in the NAS. One key capability envisioned to achieve these goals is the concept of equivalent visual operations (EVO), where flight operations continue irrespective of the actual weather conditions. One way EVO might be attained is by using a combined vision system (CVS) which combines real-time EFVS imagery with a database-derived synthetic rendering of surrounding terrain, obstacles, and flight environment, to provide a virtual visual flight depiction for the pilot.

Flight Literacy Recommends

Rod Machado's Instrument Pilot's Handbook -Flight Literacy recommends Rod Machado's products because he takes what is normally dry and tedious and transforms it with his characteristic humor, helping to keep you engaged and to retain the information longer. (see all of Rod Machado's Products).

Improvement Plans (Part One)

Filed Under: Improvement Plans

Next Generation Air Transportation (NextGen) System

Next Generation Air Transportation System (NextGen) is a comprehensive overhaul of the National Airspace System (NAS) designed to make air travel more convenient and dependable, while ensuring flights are as safe and secure as possible. It moves away from ground-based surveillance and navigation to new and more dynamic satellite-based systems and procedures, and introduces new technological innovations in areas such as weather forecast, digital communications, and networking. [Figure 5-1] When fully implemented, NextGen will safely allow aircraft to fly more closely together on more direct routes, reducing delays, and providing unprecedented benefits for the environment and the economy through reductions in carbon emissions, fuel consumption, and noise. [Figure 5-2]

Figure 5-1. Next Generation Air Transportation System (NEXGEN) introduces new technological innovations for weather forecasting, digital communications, and networking.
Figure 5-1. Next Generation Air Transportation System (NEXGEN) introduces new technological innovations for weather forecasting, digital communications, and networking. [click image to enlarge]

Figure 5-2. Satellite-based navigation and tracking allows more aircraft to fly closely together on more direct routes.
Figure 5-2. Satellite-based navigation and tracking allows more aircraft to fly closely together on more direct routes. [click image to enlarge]
Implementation in stages across the United States is due between 2012 and 2025. In order to implement NextGen, the FAA will undertake a wide-range transformation of the entire United States air transportation system. NextGen consists of the following five systems:

  1. Automatic dependent surveillance-broadcast (ADS-B)—automatically broadcasts the aircraft’s position and other aircraft specific information to air traffic control (ATC) ground facilities and nearby aircraft equipped with ADS-B In. Effective January 1, 2020 all aircraft operating in certain controlled U.S. airspace will be required to operate ADS-B Out equipment at all times. While Global Navigation Satellite System (GNSS) is not mandated by rule as the position sensor, it is currently the only position source that meets the rule’s performance requirements. Aircraft broadcasting ADS-B Out data provide ATC and cooperating ADS-B-In aircraft more precise on-the- ground or in-the-air positioning information based on the increased frequency of the data broadcasts and the accuracy of GNSS. ADS-B will provide a complete picture of air traffic for ATC and pilots of ADS-B In-equipped aircraft. The FAA’s ADS-B ground infrastructure is complete and ATC now uses ADS-B for aircraft tracking both in the air and on the ground at many airports.
  2. System wide information management (SWIM)— will provide a single infrastructure and information management system to deliver high quality, timely data to many users and applications. By reducing the number and types of interfaces and systems, SWIM will reduce data redundancy and better facilitate multi- user information sharing. SWIM will also enable new modes of decision-making as information is more easily accessed. [Figure 5-4]
  3. Next generation data communications—current communications between aircrew and ATC, and between air traffic controllers, are largely realized through voice communications. Initially, the introduction of data communications will provide an additional means of two-way communication for ATC clearances, instructions, advisories, flight crew requests, and reports. With the majority of aircraft data link equipped, the exchange of routine controller-pilot messages and clearances via data link will enable controllers to handle more traffic. This will improve ATC productivity, enhancing capacity and safety. [Figure 5-5]
  4. Next generation network enabled weather (NNEW)— seventy percent of NAS delays are attributed to weather every year. The goal of NNEW is to cut weather-related delays at least in half. Tens of thousands of global weather observations and sensor reports from ground, airborne, and spacebased sources will fuse into a single national weather information system updated in real time. NNEW will provide a common weather picture across the NAS and enable better air transportation decisionmaking. [Figure 5-6]
  5. NAS voice switch (NVS)—there are currently seventeen different voice switching systems in the NAS; some in use for more than twenty years. NVS will replace these systems with a single air/ground and ground/ground voice communications system. [Figure 5-7]
Figure 5-3. Automatic Dependent Surveillance-Broadcast (ADS-B) systems.
Figure 5-3. Automatic Dependent Surveillance-Broadcast (ADS-B) systems.

Figure 5-4. System wide information management (SWIM)—an information management system that helps deliver high quality, timely data to improve the efficiency of the national airspace.
Figure 5-4. System wide information management (SWIM)—an information management system that helps deliver high quality, timely data to improve the efficiency of the national airspace. [click image to enlarge]
Figure 5-5. Next generation data communications provides an additional means of two-way communication for ATC clearances, instructions, advisories, flight crew requests, and reports.
Figure 5-5. Next generation data communications provides an additional means of two-way communication for ATC clearances, instructions, advisories, flight crew requests, and reports. [click image to enlarge]

Figure 5-6. Next generation network enabled weather (NNEW) provides a common weather picture across the NAS.
Figure 5-6. Next generation network enabled weather (NNEW) provides a common weather picture across the NAS.
Figure 5-7. National airspace voice switch (NVS) will replace existing voice switching systems with single air/ground and ground/ ground voice communication systems.
Figure 5-7. National airspace voice switch (NVS) will replace existing voice switching systems with single air/ground and ground/ ground voice communication systems.
 

NextGen Existing Improvements

The goal of NextGen is to provide new capabilities that make air transportation safer and more reliable while improving the capacity of the NAS and reducing aviation’s impact on the environment. Below is a list of some of the capabilities for operational use that have already been implemented through NextGen.

  1. Starting in December 2009, the FAA began controlling air traffic over the Gulf of Mexico, an area of active airspace where surveillance was never before possible, using the satellite-based technology of ADS-B. For aircraft flying over the Gulf of Mexico, where no radar coverage is available, ATC can safely and more efficiently separate air traffic with the real-time visual representation of air traffic provided by ADS-B. It also provides pilots with more safety benefits such as improved situational awareness (SA), near real-time weather information, and additional voice communications.
  2. ADS-B services have been deployed to all 24 modernized enroute ARTCCs and the largest terminal radar approach control facilities in the NAS. In 2020, ADS-B will be mandatory for all aircraft in almost all NAS controlled airspace. [Figure 5-8]
  3. Satellite-based technologies, including the Wide Area Augmentation System (WAAS), are improving access to runways at both large and small airports. [Figure 5-9] Directions and maps have been published for more than 500 precision-like approaches enabled by WAAS. Localizer performance with vertical guidance (LPV) procedures improves access to airports in lower visibility conditions and where obstacles are present. These procedures are particularly valuable for smaller airports used by general aviation. There are now oer 2,300 LPV procedures available at runways where no instrument landing system (ILS) is present.
  4. The Ground-Based Augmentation System (GBAS) has been approved for Category I operations and the first satellite-based system has been approved for this category of precision approach which enables instrument-based operations down to 200 feet above the surface even during reduced visibility. [Figure 5-10] GBAS was installed at Houston, Texas and Newark, New Jersey airport in 2009.
  5. Multilateration, a ground-based surveillance technology, is being implemented to help improve runway access. The FAA installed and is now using wide area multilateration (WAM) systems to control air traffic in Juneau, Alaska, and at four airports in Colorado. This allows air traffic to be safely separated by five miles whereas before each aircraft had to clear the airspace around the airport before the next could enter.
  6. New runways at Chicago O’Hare, Washington Dulles, and Seattle-Tacoma Airports opened in November of 2008, which are now beginning to have a reduction in delays.
Figure 5-8. ADS-B services provide real-time precise positioning capability to ATC and ADS-B In-equipped aircraft throughout the NAS, in all phases of flight operations.
Figure 5-8. ADS-B services provide real-time precise positioning capability to ATC and ADS-B In-equipped aircraft throughout the NAS, in all phases of flight operations. [click image to enlarge]
Figure 5-9. Wide Area Augmentation System (WAAS).
Figure 5-9. Wide Area Augmentation System (WAAS).

Figure 5-10. Ground-Based Augmentation System (GBAS).
Figure 5-10. Ground-Based Augmentation System (GBAS). [click image to enlarge]

Flight Literacy Recommends

Rod Machado's Instrument Pilot's Handbook -Flight Literacy recommends Rod Machado's products because he takes what is normally dry and tedious and transforms it with his characteristic humor, helping to keep you engaged and to retain the information longer. (see all of Rod Machado's Products).

Approaches (Part Twenty-Eight)

Filed Under: Approaches

Radar Approaches

The two types of radar approaches available to pilots when operating in the NAS are precision approach radar (PAR) and airport surveillance radar (ASR). Radar approaches may be given to any aircraft at the pilot’s request. ATC may also offer radar approach options to aircraft in distress regardless of the weather conditions or as necessary to expedite traffic. Despite the control exercised by ATC in a radar approach environment, it remains the pilot’s responsibility to ensure the approach and landing minimums listed for the approach are appropriate for the existing weather conditions considering personal approach criteria certification and company OpSpecs.

Perhaps the greatest benefit of either type of radar approach is the ability to use radar to execute a no gyro approach. Assuming standard rate turns, ATC can indicate when to begin and end turns. If available, pilots should make use of this approach when the heading indicator has failed and partial panel instrument flying is required.

Information about radar approaches is published in tabular form in the front of the TPP booklet. PAR, ASR, and circling approach information including runway, DA, DH, or MDA, height above airport (HAA), HAT, ceiling, and visibility criteria are outlined and listed by specific airport.

Regardless of the type of radar approach in use, ATC monitors aircraft position and issues specific heading and altitude information throughout the entire approach. Particularly, lost communications procedures should be briefed prior to execution to ensure pilots have a comprehensive understanding of ATC expectations if radio communication were lost. ATC also provides additional information concerning weather and missed approach instructions when beginning a radar approach. [Figure 4-56]

Figure 4-56. Asheville Regional KAVL, Asheville, North Carolina, radar instrument approach minimums.
Figure 4-56. Asheville Regional KAVL, Asheville, North Carolina, radar instrument approach minimums.

Precision Approach Radar (PAR)

PAR provides both vertical and lateral guidance, as well as range, much like an ILS, making it the most precise radar approach available. The radar approach, however, is not able to provide visual approach indications in the flight deck. This requires the flight crew to listen and comply with controller instructions. PAR approaches are rare, with most of the approaches used in a military setting; any opportunity to practice this type of approach is beneficial to any flight crew.

The final approach course of a PAR approach is normally aligned with the runway centerline, and the associated glideslope is typically no less than 2.5° and no more than 3°. Obstacle clearance for the final approach area is based on the particular established glideslope angle and the exact formula is outlined in FAA Order 8260.3. [Figure 4-57]

Figure 4-57. PAR final approach area criteria.
Figure 4-57. PAR final approach area criteria. [click image to enlarge]

Airport Surveillance Radar (ASR)

ASR approaches are typically only approved when necessitated for an ATC operational requirement or in an unusual or emergency situation. This type of radar only provides heading and range information, although the controller can advise the pilot of the altitude where the aircraft should be based on the distance from the runway. An ASR approach procedure can be established at any radar facility that has an antenna within 20 NM of the airport and meets the equipment requirements outlined in FAA Order 8200.1, U.S. Standard Flight Inspection Manual. ASR approaches are not authorized for use when Center Radar ARTS processing (CENRAP) procedures are in use due to diminished radar capability.

The final approach course for an ASR approach is aligned with the runway centerline for straight-in approaches and aligned with the center of the airport for circling approaches. Within the final approach area, the pilot is also guaranteed a minimum of 250 feet obstacle clearance. ASR descent gradients are designed to be relatively flat, with an optimal gradient of 150 feet per mile and never exceeding 300 feet per mile.

 

Localizer Approaches

As an approach system, the localizer is an extremely flexible approach aid that, due to its inherent design, provides many applications for a variety of needs in instrument flying. An ILS glideslope installation may be impossible due to surrounding terrain. The localizer is able to provide four separate types of non-precision approaches from one approach system:

  • Localizer approach
  • Localizer/DME approach
  • Localizer back course approach
  • Localizer-type directional aid (LDA)

Localizer and Localizer DME

The localizer approach system can provide both precision and non-precision approach capabilities to a pilot. As a part of the ILS system, the localizer provides horizontal guidance for a precision approach. Typically, when the localizer is discussed, it is thought of as a non-precision approach due to the fact that either it is the only approach system installed, or the glideslope is out of service on the ILS. In either case, the localizer provides a non-precision approach using a localizer transmitter installed at a specific airport. [Figure 4-58]

Figure 4-58. Vicksburg Tallulah Regional KTVR, Tallulah Vicksburg, Louisiana, LOC RWY 36.
Figure 4-58. Vicksburg Tallulah Regional KTVR, Tallulah Vicksburg, Louisiana, LOC RWY 36.

TERPS provides the same alignment criteria for a localizer approach as it does for the ILS, since it is essentially the same approach without vertical guidance stemming from the glideslope. A localizer is always aligned within 3° of the runway, and it is afforded a minimum of 250 feet obstacle clearance in the final approach area. In the case of a localizer DME (LOC DME) approach, the localizer installation has a collocated DME installation that provides distance information required for the approach. [Figure 4-59]

Figure 4-59. Vicksburg Tallulah Regional KTVR, Tallulah Vicksburg, Louisiana, LOC RWY 36.
Figure 4-59. Vicksburg Tallulah Regional KTVR, Tallulah Vicksburg, Louisiana, LOC RWY 36.

Localizer Back Course

In cases where an ILS is installed, a back course may be available in conjunction with the localizer. Like the localizer, the back course does not offer a glideslope, but remember that the back course can project a false glideslope signal and the glideslope should be ignored. Reverse sensing occurs on the back course using standard VOR equipment.

 

With a horizontal situation indicator (HSI) system, reverse sensing is eliminated if it is set appropriately to the front course. [Figure 4-60]

Figure 4-60. Dayton Beach International DAB, Dayton Beach, Florida, LOC BC RWY 25R.
Figure 4-60. Dayton Beach International DAB, Dayton Beach, Florida, LOC BC RWY 25R.

Localizer-Type Directional Aid (LDA)

The LDA is of comparable use and accuracy to a localizer but is not part of a complete ILS. The LDA course usually provides a more precise approach course than the similar simplified directional facility (SDF) installation, which may have a course width of 6° or 12°.

The LDA is not aligned with the runway. Straight-in minimums may be published where alignment does not exceed 30° between the course and runway. Circling minimums only are published where this alignment exceeds 30°.

A very limited number of LDA approaches also incorporate a glideslope. These are annotated in the plan view of the instrument approach chart with a note, “LDA/Glideslope.” These procedures fall under a newly defined category of approaches called Approach (Procedure) with Vertical Guidance (aviation) APVs. LDA minima for with and without glideslope is provided and annotated on the minima lines of the approach chart as S−LDA/GS and S−LDA. Because the final approach course is not aligned with the runway centerline, additional maneuvering is required compared to an ILS approach. [Figure 4-61]

Figure 4-61. Hartford Brainard KHFD, Hartford, Connecticut, LDA RWY 2.
Figure 4-61. Hartford Brainard KHFD, Hartford, Connecticut, LDA RWY 2.
 

Simplified Directional Facility (SDF)

The SDF provides a final approach course similar to that of the ILS localizer. It does not provide glideslope information. A clear understanding of the ILS localizer and the additional factors listed below completely describe the operational characteristics and use of the SDF. [Figure 4-62]

Figure 4-62. Lebanon Floyd W Jones, Lebanon, Missouri, SDF RWY 36.
Figure 4-62. Lebanon Floyd W Jones, Lebanon, Missouri, SDF RWY 36.

The approach techniques and procedures used in an SDF instrument approach are essentially the same as those employed in executing a standard localizer approach except the SDF course may not be aligned with the runway and the course may be wider, resulting in less precision. Like the LOC type approaches, the SDF is an alternative approach that may be installed at an airport for a variety of reasons, including terrain. The final approach is provided a minimum of 250 feet obstacle clearance for straight-in approaches while in the final approach area, which is an area defined for a 6° course: 1,000 feet at or abeam the runway threshold expanding to 19,228 feet (10 NM) from the threshold. The same final approach area for a 12° course is larger. This type of approach is also designed with a maximum descent gradient of 400 feet per NM, unless circling only minimums are authorized.

Flight Literacy Recommends

Rod Machado's Instrument Pilot's Handbook -Flight Literacy recommends Rod Machado's products because he takes what is normally dry and tedious and transforms it with his characteristic humor, helping to keep you engaged and to retain the information longer. (see all of Rod Machado's Products).

Approaches (Part Twenty-Seven)

Filed Under: Approaches

Converging ILS Approaches

Another method by which ILS approach capacity can be increased is through the use of converging approaches. Converging approaches may be established at airports that have runways with an angle between 15° and 100° and each runway must have an ILS. Additionally, separate procedures must be established for each approach, and each approach must have a MAP at least 3 NM apart with no overlapping of the protected missed approach airspace. Only straight-in approaches are approved for converging ILS procedures. If the runways intersect, the controller must be able to visually separate intersecting runway traffic.

Approaches to intersecting runways generally have higher minimums, commonly with 600-foot ceiling and 1 1/4 to 2 mile visibility requirements. Pilots are informed of the use of converging ILS approaches by the controller upon initial contact or through ATIS. [Figure 4-50]

Figure 4-50. Converging approach criteria
Figure 4-50. Converging approach criteria

Dallas/Fort Worth International airport is one of the few airports that makes use of converging ILS approaches because its runway configuration has multiple parallel runways and two offset runways. [Figure 4-51] The approach chart title indicates the use of converging approaches and the notes section highlights other runways that are authorized for converging approach procedures. Note the slight different in charting titles on the IAPs. Soon all Converging ILS procedures will be charted in the newer format shown in Figure 4-50, with the use of “V” in the title, and “CONVERGING” in parenthesis.

Figure 4-51. Dallas-Fort Worth KDFW, Dallas-Fort Worth, Texas, CONVERGING ILS RWY 35C.
Figure 4-51. Dallas-Fort Worth KDFW, Dallas-Fort Worth, Texas, CONVERGING ILS RWY 35C.

VOR Approach

The VOR is one of the most widely used non-precision approach types in the NAS. VOR approaches use VOR facilities both on and off the airport to establish approaches and include the use of a wide variety of equipment, such as DME and TACAN. Due to the wide variety of options included in a VOR approach, TERPS outlines design criteria for both on and off airport VOR facilities, as well as VOR approaches with and without a FAF. Despite the various configurations, all VOR approaches are non-precision approaches, require the presence of properly operating VOR equipment, and can provide MDAs as low as 250 feet above the runway. VOR also offers a flexible advantage in that an approach can be made toward or away from the navigational facility.

 

The VOR approach into Fort Rucker, Alabama, is an example of a VOR approach where the VOR facility is on the airport and there is no specified FAF. [Figure 4-52] For a straight-in approach, the final approach course is typically aligned to intersect the extended runway centerline 3,000 feet from the runway threshold, and the angle of convergence between the two does not exceed 30°. This type of VOR approach also includes a minimum of 300 feet of obstacle clearance in the final approach area. The final approach area criteria include a 2 NM wide primary area at the facility that expands to 6 NM wide at a distance of 10 NM from the facility. Additional approach criteria are established for courses that require a high altitude teardrop approach penetration.

Figure 4-52. Fort Rucker, Alabama, KOZR VOR RWY 6.
Figure 4-52. Fort Rucker, Alabama, KOZR VOR RWY 6.

When DME is included in the title of the VOR approach, operable DME must be installed in the aircraft in order to fly the approach from the FAF. The use of DME allows for an accurate determination of position without timing, which greatly increases situational awareness throughout the approach. Alexandria, Louisiana, is an excellent example of a VOR/DME approach in which the VOR is off the airport and a FAF is depicted. [Figure 4-53] In this case, the final approach course is a radial or straight-in final approach and is designed to intersect the runway centerline at the runway threshold with the angle of convergence not exceeding 30°.

Figure 4-53. Alexandria International (AEX), Alexandria, Louisiana, KAEX VOR DME RWY 32.
Figure 4-53. Alexandria International (AEX), Alexandria, Louisiana, KAEX VOR DME RWY 32.

The criteria for an arc final approach segment associated with a VOR/DME approach is based on the arc being beyond 7 NM and no farther than 30 NM from the VOR and depends on the angle of convergence between the runway centerline and the tangent of the arc. Obstacle clearance in the primary area, which is considered the area 4 NM on either side of the arc centerline, is guaranteed by at least 500 feet.

 

NDB Approach

Like the VOR approach, an NDB approach can be designed using facilities both on and off the airport, with or without a FAF, and with or without DME availability. At one time, it was commonplace for an instrument student to learn how to fly an NDB approach, but with the growing use of GPS, many pilots no longer use the NDB for instrument approaches. New RNAV approaches are also rapidly being constructed into airports that are served only by NDB. The long-term plan includes the gradual phase out of NDB facilities, and eventually, the NDB approach becomes nonexistent. Until that time, the NDB provides additional availability for instrument pilots into many smaller, remotely located airports.

The NDB Runway 35 approach at Carthage/Panola County Sharpe Field is an example of an NDB approach established with an on-airport NDB that does not incorporate a FAF. [Figure 4-54] In this case, a procedure turn or penetration turn is required to be a part of the approach design. For the NDB to be considered an on-airport facility, the facility must be located within one mile of any portion of the landing runway for straight-in approaches and within one mile of any portion of usable landing surface for circling approaches. The final approach segment of the approach is designed with a final approach area that is 2.5 NM wide at the facility and increases to 8 NM wide at 10 NM from the facility. Additionally, the final approach course and the extended runway centerline angle of convergence cannot exceed 30° for straight-in approaches. This type of NDB approach is afforded a minimum of 350 feet obstacle clearance.

Figure 4-54. Carthage/Panola County-Sharpe Field, Carthage, Texas, (K4F2), NDB RWY 35.
Figure 4-54. Carthage/Panola County-Sharpe Field, Carthage, Texas, (K4F2), NDB RWY 35.

When a FAF is established for an NDB approach, the approach design criteria changes. It also takes into account whether or not the NDB is located on or off the airport. Additionally, this type of approach can be made both moving toward or away from the NDB facility. The Tuscon Ryan Field, NDB/DME RWY 6 is an approach with a FAF using an on-airport NDB facility that also incorporates the use of DME. [Figure 4-55] In this case, the NDB has DME capabilities from the LOC approach system installed on the airport. While the alignment criteria and obstacle clearance remain the same as an NDB approach without a FAF, the final approach segment area criteria changes to an area that is 2.5 NM wide at the facility and increases to 5 NM wide, 15 NM from the NDB.

Figure 4-55. Tucson/Ryan Field, Tuscson, Arizona, (KRYN), NDB/DME or GPS RWY 6R.
Figure 4-55. Tucson/Ryan Field, Tuscson, Arizona, (KRYN), NDB/DME or GPS RWY 6R.

Flight Literacy Recommends

Rod Machado's Instrument Pilot's Handbook -Flight Literacy recommends Rod Machado's products because he takes what is normally dry and tedious and transforms it with his characteristic humor, helping to keep you engaged and to retain the information longer. (see all of Rod Machado's Products).

Approaches (Part Twenty-Six)

Filed Under: Approaches

Simultaneous Independent Approaches

Dual and triple simultaneous independent parallel instrument approaches, are authorized at certain airports with specified distances between parallel runway centerlines. As a part of the simultaneous independent approach approval, an NTZ must be established to ensure proper flight track boundaries for all aircraft. Outside of the NTZ, normal operating zones (NOZ) indicate the operating zone within which aircraft remain during normal approach operations. The NOZ between the final approach courses varies in width depending on the runway centerline spacing. The NTZ is defined as a 2,000-foot wide area located equidistant between the final approach courses in which flight is not allowed during the simultaneous operation. [Figure 4-46] Any time an aircraft breaches or is anticipated to breach the NTZ, ATC issues instructions for the threatened aircraft on the adjacent final approach course to break off the approach to avoid potential conflict.

Figure 4-46. Simultaneous Independent Approach Example Using ILS Approaches.
Figure 4-46. Simultaneous Independent Approach Example Using ILS Approaches. [click image to enlarge]

A local controller for each runway is also required. Dedicated final monitor controllers for each runway monitor separation, track aircraft positions and issue instructions to pilots of aircraft observed deviating from the final approach course. [Figure 4-45] These operations are normally authorized for ILS, LDA and RNAV approach procedures with vertical guidance. For simultaneous parallel ILS approach operations, pilots should review the chart notes to determine whether the non-precision LOC procedure is authorized (in the event of glide slope equipment failure either in the aircraft or the ground). An example of a restriction on the use of a LOC procedure is shown in the notes on Figure 4-24: “LOC procedure NA during simultaneous operations”. Likewise, for RNAV (GPS) approaches, use of LNAV procedures are often restricted during simultaneous operations.

Figure 4-45. Charlotte Douglas International KCLT, Charlotte, North Carolina, ILS or LOC RWY 18L.
Figure 4-45. Charlotte Douglas International KCLT, Charlotte, North Carolina, ILS or LOC RWY 18L.

Triple simultaneous independent approaches are authorized provided the runway centerlines are separated by at least 3900 feet for triple straight in approaches. If one or both outside runways have an offset approach course of 2.5° to 3.0°, the spacing between those outer runways and the center runway may be reduced to 3000 feet.

 

Simultaneous Close Parallel Precision Runway Monitor (PRM) Approaches

Simultaneous close parallel (independent) PRM approaches are authorized for use at designated airports that have parallel runways spaced less than 4,300 feet apart. [Figure 4-47] Certain PRM approaches are referred to as Simultaneous Offset Instrument Approaches (SOIA) and are discussed in depth later in this category.

Figure 4-47. Simultaneous independent close parallel approach example using ILS PRM approaches.
Figure 4-47. Simultaneous independent close parallel approach example using ILS PRM approaches. [click image to enlarge]
PRM procedures are the most efficient method of increasing approach capacity at airports with closely spaced, parallel runways. Use of PRM procedures increases airport capacity during periods of low visibility by providing ATC the capability to monitor simultaneous close parallel (independent) approaches. These PRM operations reduce delays and increase fuel savings. Traditionally the PRM system included a high-update rate radar, a high resolution ATC radar display, as well as software that can autonomously track aircraft in close to real time, with visual and aural alerts that depict the aircraft’s current position and velocity as well as displaying a ten-second projected position to the controllers. Today, most PRM operations are conducted without the need for high update rate radar, so long as all of the other requirements to conduct such approaches are met.

There are also special communications and ATC requirements for PRM approaches. PRM approaches require a final NTZ monitor controller for each runway, a separate tower controller for each runway, a PRM tower frequency, and a runway-specific PRM frequency. Each final monitor controller will have a dedicated PRM frequency, and the tower controller will have a separate common PRM frequency. Pilots transmit and receive on the common tower PRM frequency, but maintain listening watch on the final controller’s PRM frequency for their specified runway. The final monitor controller has override capability on their PRM frequency. In that way, if the common tower frequency is blocked, the monitor controller’s instructions will be heard by the pilot on the monitor controller’s PRM frequency. Pilot training is prescribed and required for pilots prior to using the PRM procedures. The FAA PRM website (http://www.faa.gov/training_testing/ training/ prm/) contains training information for PRM approaches and hosts PRM training materials for download or viewing online.”

 

When pilots or flight crews wish to decline a PRM approach, ATC must be notified immediately and the flight will be transitioned into the area at the convenience of ATC. Pilots who are unable to accept a PRM approach may be subject to delays.

Figure 4-48. Example of Simultaneous close parallel instrument approach: Atlanta, Georgia, ILS PRM RWY 10 and AAUP.
Figure 4-48. Example of Simultaneous close parallel instrument approach: Atlanta, Georgia, ILS PRM RWY 10 and AAUP. [click image to enlarge]
The approach chart for the PRM approach requires review of the accompanying AAUP page, which outlines pilot, aircraft, and procedure requirements necessary to participate in PRM operations. [Figure 4-48] Pilots need to be aware of the differences associated with this type of approach. Differences, as compared to other simultaneous approaches, are listed below:

  • Immediately follow break out instructions as soon as safety permits.
  • Use of the AAUP.
  • Use of dual VHF communications.
  • Completion of required PRM training.
  • Handflying any breakout instruction. It is important to note that descending breakouts, though rare, may be issued. Flight crews will never be issued breakout instructions that clear them to an altitude below the MVA, and they are not required to descend at more than 1,000 fpm.
  • Traffic Alert and Collision Avoidance System (TCAS) is not required to conduct a PRM approach. For aircraft so equipped, if the controller’s climb/descendinstruction differs from the TCAS resolution advisory (RA), pilots must follow the RA while continuing tofollow the controller’s turn instruction. Report thisdeviation to ATC as soon as practical.
 

Simultaneous Offset Instrument Approaches (SOIAs)

SOIAs allow simultaneous approaches to two parallel runways spaced at least 750 feet apart, but less than 3,000 feet. Traditionally, the SOIA procedure has used an ILS/ PRM approach to one runway and an offset localizer-type directional aid (LDA)/PRM approach with glideslope to the adjacent runway. Now, RNAV (GPS) and RNAV (RNP) approaches may also be used for SOIA.” Approach charts will include procedural notes, such as “Simultaneous Close Parallel approach authorized with LDA PRM RWY 28R and RNAV (GPS) PRM X RWY 28R.” or “Simultaneous approach authorized”. San Francisco had the first published SOIA approach. [Figure 4-49]

Figure 4-49. Example of Approach and AAUP used for Simultaneous Offset Instrument Approach Procedure.
Figure 4-49. Example of Approach and AAUP used for Simultaneous Offset Instrument Approach Procedure. [click image to enlarge]
The training, procedures, and system requirements for SOIA ILS/PRM and LDA/PRM approaches are identical with those used for simultaneous close parallel ILS/PRM approaches until near the LDA/PRM approach MAP, where visual acquisition of the ILS aircraft by the LDA aircraft must be accomplished. If visual acquisition is not accomplished prior to reaching the LDA MAP , a missed approach must be executed. A visual segment for the LDA/PRM approach is established between the LDA MAP and the runway threshold. Aircraft transition in visual conditions from the LDA course, beginning at the LDA MAP, to align with the runway and can be stabilized by 500 feet AGL on the extended runway centerline. Pilots are reminded that they are responsible for collision avoidance and wake turbulence mitigation between the LDA MAP and the runway.

The FAA website has additional information about PRM and SOIA approaches, including an instructional PowerPoint training presentation at http://www.faa.gov/training_testing/training/prm/.

Flight Literacy Recommends

Rod Machado's Instrument Pilot's Handbook -Flight Literacy recommends Rod Machado's products because he takes what is normally dry and tedious and transforms it with his characteristic humor, helping to keep you engaged and to retain the information longer. (see all of Rod Machado's Products).

Approaches (Part Twenty-Five)

Filed Under: Approaches

ILS Approach Categories

There are three general classifications of ILS approaches: CAT I, CAT II, and CAT III (autoland). The basic ILS approach is a CAT I approach and requires only that pilots be instrument rated and current, and that the aircraft be equipped appropriately. CAT II and CAT III ILS approaches have lower minimums and require special certification for operators, pilots, aircraft, and airborne/ground equipment. Because of the complexity and high cost of the equipment, CAT III ILS approaches are used primarily in air carrier and military operations. [Figure 4-41]

Figure 4-41. ILS approach categories.
Figure 4-41. ILS approach categories. [click image to enlarge]

CAT II and III Approaches

The primary authorization and minimum RVRs allowed for an air carrier to conduct CAT II and III approaches can be found in OpSpecs Part C. CAT II and III operations allow authorized pilots to make instrument approaches in weather that would otherwise be prohibitive.

While CAT I ILS operations permit substitution of midfield RVR for TDZ RVR (when TDZ RVR is not available), CAT II ILS operations do not permit any substitutions for TDZ RVR. The TDZ RVR system is required and must be used. The TDZ RVR is controlling for all CAT II ILS operations.

The weather conditions encountered in CAT III operations range from an area where visual references are adequate for manual rollout in CAT IIIa, to an area where visual references are inadequate even for taxi operations in CAT IIIc. To date, no U.S. operator has received approval for CAT IIIc in OpSpecs. Depending on the auto-flight systems, some aircraft require a DH to ensure that the aircraft is going to land in the TDZ and some require an Alert Height as a final cross-check of the performance of the auto-flight systems. These heights are based on radio altitude (RA) and can be found in the specific aircraft’s AFM. [Figure 4-42]

Figure 4-42. Category III approach procedure.
Figure 4-42. Category III approach procedure.

Both CAT II and III approaches require special ground and airborne equipment to be installed and operational, as well as special aircrew training and authorization. The OpSpecs of individual air carriers detail the requirements of these types of approaches, as well as their performance criteria. Lists of locations where each operator is approved to conduct CAT II and III approaches can also be found in the OpSpecs.

Special Authorization approaches are designed to take advantage of advances in flight deck avionics and technologies like Head-Up Displays (HUD) and automatic landings. There are extensive ground infrastructures and lighting requirements for standard CAT II/III, and the Special Authorization approaches mitigate the lack of some lighting with the modern avionics found in many aircraft today. Similar to standard CAT II/III, an air carrier must be specifically authorized to conduct Special Authorization CAT I/II in OpSpecs Part C.

 

Simultaneous Approaches To Parallel Runways

Airports that have two or more parallel runways may be authorized to use simultaneous parallel approaches to maximize the capacity of the airport. Depending on the runway centerline separation and ATC procedures, there are three classifications of simultaneous parallel approaches: Simultaneous dependent approaches, simultaneous independent approaches and simultaneous independent close parallel approaches. A simultaneous dependent approach differs from a simultaneous independent approach in that the minimum distance between parallel runway centerlines may be less. A staggered separation of aircraft on the adjacent final approach course is required; but there is no requirement for a No Transgression Zone (NTZ) or Final Monitor Controllers. An independent approach eliminates the need for staggered approaches and aircraft may be side by side or pass if speeds are different.

NOTE:

  1. Simultaneous approaches involving an RNAV approach may only be conducted when (GPS) appears in the approach title or a chart note states that GPS is required. See the “ILS Approaches” paragraph above for information about pilot responsibilities when simultaneous approaches are in use.
  2. Flight Director or Autopilot requirements for simultaneous operations will be annotated on the approach chart.
  3. Simultaneous approaches may only be conducted where instrument approach charts specifically authorize simultaneous approaches.

Simultaneous Dependent Approaches [Figure 4-46]

When simultaneous dependent approaches are provided, ATC applies specific minimum diagonal separation criteria, depending on the runway separation, between aircraft on adjacent final approach courses. Aircraft will be staggered by a minimum of 1 NM diagonally on final, depending on the distance between runway centerlines. Greater separation standards are applied when the distance between runway centerlines is greater. [Figure 4-43]

Figure 4-43. Classification of Simultaneous Parallel Approaches.
Figure 4-43. Classification of Simultaneous Parallel Approaches. [click image to enlarge]
At some airports, simultaneous dependent instrument approaches can be conducted with runways spaced less than 2,500 feet with specific centerline separations and threshold staggers. ATC is permitted to apply reduced diagonal separation and special wake turbulence procedures. The lead aircraft of the dependent pair is restricted to being small or large aircraft weight type and is cleared to the lower approach. The design of the approach, aircraft weight type, and lateral separation between the two approaches provide necessary wake turbulence avoidance for this type of operation. An example of approach design to help avoid wake turbulence is that some locations use different glide slope angles on adjacent approaches; also, if applicable, staggered thresholds help. An ATIS example is: “Simultaneous ILS Runway 28 Left and ILS Runway 28 Right in use.” For further information, see FAA Orders JO 7110.65 and JO 7110.308.

 

Where a simultaneous approach operation is approved, sometimes each approach chart indicates the other runway(s) with which simultaneous approaches can be conducted. For example, “Simultaneous approaches authorized with runway 12L”. As procedures are revised, the chart note will be modified to indicate “Simultaneous approach authorized” but will not list the other runways or approach types as that detailed information will normally be transmitted in the ATIS or by ATC. For example, pilots flying into Sacramento, California, may encounter parallel approach procedures. [Figure 4-44] When there is no chart note stating, “Simultaneous approaches authorized”, standard separation is used between aircraft on parallel approaches.

Figure 4-44. Sacramento International KSMF, Sacramento, California, ILS or LOC RWY 16L.
Figure 4-44. Sacramento International KSMF, Sacramento, California, ILS or LOC RWY 16L.

Flight Literacy Recommends

Rod Machado's Instrument Pilot's Handbook -Flight Literacy recommends Rod Machado's products because he takes what is normally dry and tedious and transforms it with his characteristic humor, helping to keep you engaged and to retain the information longer. (see all of Rod Machado's Products).
  • « Go to Previous Page
  • Go to page 1
  • Go to page 2
  • Go to page 3
  • Go to page 4
  • Interim pages omitted …
  • Go to page 9
  • Go to Next Page »

Primary Sidebar

SEARCH FLIGHT LITERACY

Basic Flight Training

Basic Aircraft Flight
Aeronautical Knowledge
Airplane Ownership - General Aviation
Training Aids

Advanced Flight Training

Instrument Flight Rules
Instrument Procedures
Flight Navigation
Aircraft Weight and Balance
Advanced Avionics
Risk Management
Aviation Instructor Training
Glider Flying
Weight-Shift-Control Aircraft
Helicopter Flight Training
Aircraft Mechanic (flight-mechanic.com)

Contact Us | Privacy Policy | Terms of Use
Easy Campfire Recipes | Recipe Workbook


Please help support our work
HIT THE TIP JAR

Copyright © 2022 FlightLiteracy.com




.