• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

Flight Literacy

Flight Training Educational Materials

  • Home
  • Basic Flight Training
    • Basic Aircraft Flight
    • Aeronautical Knowledge
    • Airplane Ownership – General Aviation Information
  • Advanced Flight Training
    • Instrument Flight Rules
    • Instrument Procedures
    • Flight Navigation
    • Aircraft Weight and Balance
    • Advanced Avionics
    • Risk Management
    • Aviation Instructor Training
    • Glider Flying
    • Weight-Shift Control Aircraft Flight
    • Helicopter Flight Training
    • Advisory Circulars
  • Training Aids
  • Tip Jar

Instrument Procedures

Approaches (Part Twenty-Four)

Filed Under: Approaches

RNAV Approach Types

RNAV encompasses a variety of underlying navigation systems and, therefore, approach criteria. This results in different sets of criteria for the final approach segment of various RNAV approaches. RNAV instrument approach criteria address the following procedures:

  • GPS overlay of pre-existing nonprecision approaches.
  • VOR/DME based RNAV approaches.
  • Stand-alone RNAV (GPS) approaches.
  • RNAV (GPS) approaches with vertical guidance (APV).
  • RNAV (GPS) precision approaches (WAAS and LAAS).

GPS Overlay of Nonprecision Approach

The original GPS approach procedures provided authorization to fly non-precision approaches based on conventional, ground-based NAVAIDs. Many of these approaches have been converted to stand-alone approaches, and the few that remain are identified by the name of the procedure and “or GPS.” These GPS non-precision approaches are predicated upon the design criteria of the ground-based NAVAID used as the basis of the approach. As such, they do not adhere to the RNAV design criteria for stand-alone GPS approaches, and are not considered part of the RNAV (GPS) approach classification for determining design criteria. [Figure 4-38]

Figure 4-38. Traditional GPS approach overlay.
Figure 4-38. Traditional GPS approach overlay.

GPS Stand-Alone/RNAV (GPS) Approach

The number of GPS stand-alone approaches continues to decrease as they are replaced by RNAV approaches. RNAV (GPS) approaches are named so that airborne navigation databases can use either GPS or RNAV as the title of the approach. This is required for non-GPS approach systems, such as VOR/DME based RNAV systems. In the past, these approaches were often referred to as “stand-alone GPS” approaches. They are considered non-precision approaches, offering only LNAV and circling minimums. Precision minimums are not authorized, although LNAV/ VNAV minimums may be published and used as long as the on-board system is capable of providing approach approved VNAV. The RNAV (GPS) Runway 14 approach for Lincoln, Nebraska, incorporates only LNAV and circling minimums. [Figure 4-39]

Figure 4-39. Lincoln Muni KLNK Lincoln, Nebraska, RNAV GPS RWY 14 approach.
Figure 4-39. Lincoln Muni KLNK Lincoln, Nebraska, RNAV GPS RWY 14 approach.

For a non-vertically guided straight-in RNAV (GPS) approach, the final approach course must be aligned within 15° of the extended runway centerline. The final approach segment should not exceed 10 NM, and when it exceeds 6 NM, a stepdown fix is typically incorporated. A minimum of 250 feet obstacle clearance is also incorporated into the final approach segment for straight-in approaches, and a maximum 400-ft/NM descent gradient is permitted. The approach design criteria are different for approaches that use vertical guidance provided by a Baro-VNAV system. Because the Baro-VNAV guidance is advisory and not primary, Baro-VNAV approaches are not authorized in areas of hazardous terrain, nor are they authorized when a remote altimeter setting is required. Due to the inherent problems associated with barometric readings and cold temperatures, these procedures are also temperature limited. Additional approach design criteria for RNAV Approach Construction Criteria can be found in the appropriate FAA Order 8260-series orders.

 

RNAV (GPS) Approach Using WAAS

WAAS was commissioned in July 2003, with IOC. Although precision approach capability is still in the future, WAAS currently provides a type of APV known as LPV. WAAS can support the following minima types: LPV, LNAV/VNAV, LP, and LNAV. Approach minima as low as 200 feet HAT and 1/2 SM visibility is possible, even though LPV is not considered a precision approach. WAAS covers 95 percent of the country 95 percent of the time.

Note: WAAS avionics receive an airworthiness approval in accordance with Technical Standard Order (TSO) C145, Airborne Navigation Sensors Using the Global Positioning System (GPS) Augmented by the Satellite Based Augmentation System (SBAS), or TSO-146, Stand-Alone Airborne Navigation Equipment Using the Global Positioning System (GPS) Augmented by the Satellite Based Augmentation System (SBAS), and installed in accordance with AC 20-138C, Airworthiness Approval of Positioning and Navigation Systems.

Precision approach capability will become available as more GBAS (LAAS) approach types become operational. GBAS (LAAS) further increases the accuracy of GPS and improves signal integrity warnings. Precision approach capability requires obstruction planes and approach lighting systems to meet Part 77 standards for ILS approaches. This delays the implementation of RNAV (GPS) precision approach capability due to the cost of certifying each runway.

ILS Approaches

Notwithstanding emerging RNAV technology, the ILS is the most precise and accurate approach NAVAID currently in use throughout the NAS. An ILS CAT I precision approach allows approaches to be made to 200 feet above the TDZE and with visibilities as low as 1,800 RVR; with CAT II and CAT III approaches allowing descents and visibility minimums that are even lower. Non-precision approach alternatives cannot begin to offer the precision or flexibility offered by an ILS. In order to further increase the approach capacity of busy airports and exploit the maximum potential of ILS technology, many different applications are in use.

An ILS system can accommodate up to 29 arrivals per hour on a single runway. Two or three parallel runways operating independently can double or triple the capacity of the airport. For air commerce, this means greater flexibility in scheduling passenger and cargo service. Capacity is increased through the use of simultaneous or converging ILS approaches, which are explained further in the corresponding paragraphs below.

 

In order to successfully accomplish simultaneous or converging ILS approaches, flight crews and ATC have additional responsibilities. When simultaneous instrument approaches are in use, ATC advises flight crews either directly or through ATIS of the active runways. It is the pilot’s responsibility to inform ATC if unable or unwilling to execute a simultaneous approach. Pilots must comply with all ATC requests in a timely manner and maintain strict radio discipline, including using complete aircraft call signs. It is also incumbent upon the flight crew to notify ATC immediately of any problems relating to aircraft communications or navigation systems. At the very least, the approach procedure briefing should cover the entire procedure including the approach name, runway number, frequencies, final approach course, glideslope intercept altitude, DA or DH, and the missed approach instructions. The review of autopilot procedures is also appropriate when making coupled ILS approaches.

As with all approaches, the primary navigation responsibility falls upon the pilot in command. ATC instructions will be limited to ensuring aircraft separation. Additionally, MAPs are designed to diverge in order to protect all involved aircraft. ILS approaches of all types are afforded the same obstacle clearance protection and design criteria, no matter how capacity is affected by simultaneous ILS approaches. [Figure 4-40]

Figure 4-40. ILS final approach segment design criteria.
Figure 4-40. ILS final approach segment design criteria. [click image to enlarge]

Flight Literacy Recommends

Rod Machado's Instrument Pilot's Handbook -Flight Literacy recommends Rod Machado's products because he takes what is normally dry and tedious and transforms it with his characteristic humor, helping to keep you engaged and to retain the information longer. (see all of Rod Machado's Products).

Approaches (Part Twenty-Three)

Filed Under: Approaches

Charted Visual Flight Procedures

A charted visual flight procedure (CVFP) may be established at some airports with control towers for environmental or noise considerations, as well as when necessary for the safety and efficiency of air traffic operations. Designed primarily for turbojet aircraft, CVFPs depict prominent landmarks, courses, and recommended altitudes to specific runways. When pilots are flying the Roaring Fork Visual RWY 15, shown in Figure 4-35, mountains, rivers, and towns provide guidance to Aspen, Colorado’s Sardy Field instead of VORs, NDBs, and DME fixes.

Figure 4-35. Charted visual flight procedures (CVFP).
Figure 4-35. Charted visual flight procedures (CVFP).

Pilots must have a charted visual landmark or a preceding aircraft in sight, and weather must be at or above the published minimums before ATC will issue a CVFP clearance. ATC will clear pilots for a CVFP if the reported ceiling at the airport of intended landing is at least 500 feet above the MVA/MIA, and the visibility is 3 SM or more, unless higher minimums are published for the particular CVFP. When accepting a clearance to follow traffic, the pilot is responsible for maintaining a safe altitude, approach interval and wake turbulence separation from other aircraft Pilots must advise ATC if unable at any point to continue a charted visual approach or if the pilot loses sight of the preceding aircraft.

RNAV Approaches

Because of the complications with database coding, naming conventions were changed in January 2001 to accommodate all approaches using RNAV equipment into one classification which is RNAV. This classification includes both ground- based and satellite dependent systems. Eventually all approaches that use some type of RNAV will reflect RNAV in the approach title.

This changeover is being made to reflect two shifts in instrument approach technology. The first shift is the use of the RNP concept outlined in the Departure Procedures category, in which a single performance standard concept is being implemented for departure/approach procedure design. Through the use of RNP, the underlying system of navigation may not be required, provided the aircraft can maintain the appropriate RNP standard. The second shift is advanced avionics systems, such as FMS, used by most airlines, needed a new navigation standard by which RNAV could be fully integrated into the instrument approach system.

An FMS uses multi-sensor navigation inputs to produce a composite position. Essentially, the FMS navigation function automatically blends or selects position sensors to compute aircraft position. Instrument approach charts and RNAV databases needed to change to reflect these issues. A complete discussion of airborne navigation databases is included in the Airborne Navigation Databases category. Due to the multi- faceted nature of RNAV, new approach criteria have been developed to accommodate the design of RNAV instrument approaches. This includes criteria for terminal arrival areas (TAAs), RNAV basic approach criteria, and specific final approach criteria for different types of RNAV approaches.

Terminal Arrival Areas

The Terminal Arrival Area (TAA) provides a transition from the en route structure to the terminal environment with little required pilot/air traffic control interface for aircraft equipped with Area Navigation (RNAV) systems. TAAs provide minimum altitudes with standard obstacle clearance when operating within the TAA boundaries. TAAs are primarily used on RNAV approaches but may be used on an ILS approach when RNAV is the sole means for navigation to the IF; however, they are not normally used in areas of heavy concentration of air traffic . [Figure 4-36]

Figure 4-36. Terminal arrival area (TAA) design “basic T.”
Figure 4-36. Terminal arrival area (TAA) design “basic T.” [click image to enlarge]
The basic design of the RNAV procedure underlying the TAA is normally the “T” design (also called the “Basic T”). The “T” design incorporates two IAFs plus a dual purpose IF/IAF that functions as both an intermediate fix and an initial approach fix. The T configuration continues from the IF/IAF to the FAF and then to the MAP. The two base leg IAFs are typically aligned in a straight-line perpendicular to the intermediate course connecting at the IF/IAF. A Hold-in-Lieu-of Procedure Turn (HILO) is anchored at the IF/IAF and depicted on U.S. Government publications using the “hold−in−lieu−of−PT” holding pattern symbol. When the HILO is necessary for course alignment and/or descent, the dual purpose IF/IAF serves as an IAF during the entry into the pattern. Following entry into the HILO pattern and when flying a route or sector labeled “NoPT,” the dual-purpose fix serves as an IF, marking the beginning of the Intermediate Segment.

 

The standard TAA based on the “T” design consists of three areas defined by the IAF legs and the intermediate segment course beginning at the IF/IAF. These areas are called the straight−in, left−base, and right−base areas. [Figure 4-36] TAA area lateral boundaries are identified by magnetic courses TO the IF/IAF. The straight−in area can be further divided into pie−shaped sectors with the boundaries identified by magnetic courses TO the IF/ IAF, and may contain step-down sections defined by arcs based on RNAV distances from the IF/IAF.

Entry from the terminal area onto the procedure is normally accomplished via a no procedure turn (NoPT) routing or via a course reversal maneuver. The published procedure will be annotated “NoPT” to indicate when the course reversal is not authorized when flying within a particular TAA sector [Figures 4-36 and 4-37]. Otherwise, the pilot is expected to execute the course reversal under the provisions of 14 CFR § 91.175. The pilot may elect to use the course reversal pattern when it is not required by the procedure, but must receive clearance from air traffic control before beginning the procedure.

Figure 4-37. RNAV approaches with and without TAAs.
Figure 4-37. RNAV approaches with and without TAAs. [click image to enlarge]
ATC should not clear an aircraft to the left base leg or right base leg IAF within a TAA at an intercept angle exceeding 90 degrees. Pilots must not execute the HILO course reversal when the sector or procedure segment is labeled “NoPT.”

ATC may clear aircraft direct to the fix labeled IF/IAF if the course to the IF/IAF is within the straight-in sector labeled “NoPT” and the intercept angle does not exceed 90 degrees. Pilots are expected to proceed direct to the IF/ IAF and accomplish a straight-in approach. Do not execute HILO course reversal. Pilots are also expected to fly the straight−in approach when ATC provides radar vectors and monitoring to the IF/IAF and issues a“straight-in” approach clearance; otherwise, the pilot is expected to execute the HILO course reversal. (See AIM Paragraph 5−4−6, Approach Clearance)

 

On rare occasions, ATC may clear the aircraft for an approach at the airport without specifying the approach procedure by name or by a specific approach (e.g., “cleared RNAV Runway 34 approach”) without specifying a particular IAF. In either case, the pilot should proceed direct to the IAF or to the IF/IAF associated with the sector that the aircraft will enter the TAA and join the approach course from that point and if required by that sector (i.e., sector is not labeled “NoPT), complete the HILO course reversal.

Note: If approaching with a TO bearing that is on a sector boundary, the pilot is expected to proceed in accordance with a “NoPT” routing unless otherwise instructed by ATC.

Altitudes published within the TAA replace the MSA altitude. However, unlike MSA altitudes the TAA altitudes are operationally usable altitudes. These altitudes provide at least 1,000 feet of obstacle clearance, and more in mountainous areas. It is important that the pilot knows which area of the TAA that the aircraft will enter in order to comply with the minimum altitude requirements. The pilot can determine which area of the TAA the aircraft will enter by determining the magnetic bearing of the aircraft TO the fix labeled IF/IAF. The bearing should then be compared to the published lateral boundary bearings that define the TAA areas. Do not use magnetic bearing to the right-base or left-base IAFs to determine position.

An ATC clearance direct to an IAF or to the IF/IAF without an approach clearance does not authorize a pilot to descend to a lower TAA altitude. If a pilot desires a lower altitude without an approach clearance, request the lower TAA altitude from ATC. Pilots not sure of the clearance should confirm their clearance with ATC or request a specific clearance. Pilots entering the TAA with two−way radio communications failure (14 CFR § 91.185, IFR Operations: Two−way Radio Communications Failure), must maintain the highest altitude prescribed by 14 CFR § 91.185(c)(2) until arriving at the appropriate IAF.

Once cleared for the approach, pilots may descend in the TAA sector to the minimum altitude depicted within the defined area/subdivision, unless instructed otherwise by air traffic control. Pilots should plan their descent within the TAA to permit a normal descent from the IF/IAF to the FAF.

U.S. Government charts depict TAAs using icons located in the plan view outside the depiction of the actual approach procedure. Use of icons is necessary to avoid obscuring any portion of the “T” procedure (altitudes, courses, minimum altitudes, etc.). The icon for each TAA area will be located and oriented on the plan view with respect to the direction of arrival to the approach procedure, and will show all TAA minimum altitudes and sector/radius subdivisions. The IAF for each area of the TAA is included on the icon where it appears on the approach to help the pilot orient the icon to the approach procedure. The IAF name and the distance of the TAA area boundary from the IAF are included on the outside arc of the TAA area icon.

TAAs may be modified from the standard size and shape to accommodate operational or ATC requirements. Some areas may be eliminated, while the other areas are expanded. The “T” design may be modified by the procedure designers where required by terrain or ATC considerations. For instance, the “T” design may appear more like a regularly or irregularly shaped “Y,” an upside down “L,” or an “I.”

When an airway does not cross the lateral TAA boundaries, a feeder route will be established from an airway fix or NAVAID to the TAA boundary to provide a transition from the en route structure to the appropriate IAF. Each feeder route will terminate at the TAA boundary and will be aligned along a path pointing to the associated IAF. Pilots should descend to the TAA altitude after crossing the TAA boundary and cleared for the approach by ATC.

Each waypoint on the “T” is assigned a pronounceable 5− letter name, except the missed approach waypoint. These names are used for ATC communications, RNAV databases, and aeronautical navigation products. The missed approach waypoint is assigned a pronounceable name when it is not located at the runway threshold.

Flight Literacy Recommends

Rod Machado's Instrument Pilot's Handbook -Flight Literacy recommends Rod Machado's products because he takes what is normally dry and tedious and transforms it with his characteristic humor, helping to keep you engaged and to retain the information longer. (see all of Rod Machado's Products).

Approaches (Part Twenty-Two)

Filed Under: Approaches

Nonradar Environment

In the absence of radar vectors, an instrument approach begins at an IAF. An aircraft that has been cleared to a holding fix that, prior to reaching that fix, is issued a clearance for an approach, but not issued a revised routing, such as, “proceed direct to…” is expected to proceed via the last assigned route, a feeder route if one is published on the approach chart, and then to commence the approach as published. If, by following the route of flight to the holding fix, the aircraft would overfly an IAF or the fix associated with the beginning of a feeder route to be used, the aircraft is expected to commence the approach using the published feeder route to the IAF or from the IAF as appropriate. The aircraft would not be expected to overfly and return to the IAF or feeder route.

 

For aircraft operating on unpublished routes, an altitude is assigned to maintain until the aircraft is established on a segment of a published route or IAP. (Example: “Maintain 2,000 until established on the final approach course outbound, cleared VOR/DME runway 12.”) The FAA definition of established on course requires the aircraft to be established on the route centerline. Generally, the controller assigns an altitude compatible with glideslope/ glidepath intercept prior to being cleared for the approach.

Types of Approaches

In the NAS, there are approximately 1,105 VOR stations, 916 NDB stations, and 1,194 ILS installations, including 25 LOC-type directional aids (LDAs), 11 simplified directional facilities (SDFs), and 235 LOC only facilities. As time progresses, it is the intent of the FAA to reduce navigational dependence on VOR, NDB, and other ground-based NAVAIDs and, instead, to increase the use of satellite-based navigation.

To expedite the use of RNAV procedures for all instrument pilots, the FAA has begun an aggressive schedule to develop RNAV procedures. As of 2010, the number of RNAV/ GPS approaches published in the NAS numbered 10,212 – with additional procedures published every revision cycle. While it had originally been the plan of the FAA to begin decommissioning VORs, NDBs, and other groundbased NAVAIDs, the overall strategy has been changed to incorporate a majority dependence on augmented satellite navigation while maintaining a satisfactory backup system. This backup system includes retaining all CAT II and III ILS facilities and close to one-half of the existing VOR network.

Each approach is provided obstacle clearance based on the FAA Order 8260.3 TERPS design criteria as appropriate for the surrounding terrain, obstacles, and NAVAID availability. Final approach obstacle clearance is different for every type of approach but is guaranteed from the start of the final approach segment to the runway (not below the MDA for non-precision approaches) or MAP, whichever occurs last within the final approach area. It is dependent upon the pilot to maintain an appropriate flight path within the boundaries of the final approach area and maintain obstacle clearance.

There are numerous types of instrument approaches available for use in the NAS including RNAV (GPS), ILS, MLS, LOC, VOR, NDB, SDF, and radar approaches. Each approach has separate and individual design criteria, equipment requirements, and system capabilities.

Visual and Contact Approaches

To expedite traffic, ATC may clear pilots for a visual approach in lieu of the published approach procedure if flight conditions permit. Requesting a contact approach may be advantageous since it requires less time than the published IAP and provides separation from IFR and special visual flight rules (SVFR) traffic. A contact or visual approach may be used in lieu of conducting a SIAP, and both allow the flight to continue as an IFR flight to landing while increasing the efficiency of the arrival.

Visual Approaches

When it is operationally beneficial, ATC may authorize pilots to conduct a visual approach to the airport in lieu of the published IAP. A pilot, or the controller, can initiate a visual approach. Before issuing a visual approach clearance, ATC must verify that the pilot has the airport, or a preceding aircraft that they are to follow, in sight. Once the pilot reports the airport, or aircraft, in sight, the pilot is responsible to maintain safe altitudes and separation from other aircraft. If the pilot reports the airport in sight but does not see the aircraft they are assigned to follow, ATC may still issue the visual approach clearance but the controller maintains responsibility for aircraft separation (including wake turbulence separation). Once pilots report the aircraft in sight, they assume the responsibilities for their own separation and wake turbulence avoidance.

A visual approach is an ATC authorization for an aircraft on an IFR flight plan to proceed visually to the airport of intended landing; it is not an IAP. Also, there is no missed approach segment. An aircraft unable to complete a visual approach must be handled as any other go-around and appropriate separation must be provided. A vector for a visual approach may be initiated by ATC if the reported ceiling at the airport of intended landing is at least 500 feet above the MVA/MIA and the visibility is 3 SM or greater. At airports without weather reporting service, there must be reasonable assurance through area weather reports and PIREPs that descent and approach to the airport can be made visually, and the pilot must be informed that weather information is not available.

 

The visual approach clearance is issued to expedite the flow of traffic to an airport. It is authorized when the ceiling is reported or expected to be at least 1,000 feet AGL and the visibility is at least 3 SM. Pilots must remain clear of the clouds at all times while conducting a visual approach. At an airport with a control tower, pilots may be cleared to fly a visual approach to one runway while others are conducting VFR or IFR approaches to another parallel, intersecting, or converging runway. Also, when radar service is provided, it is automatically terminated when the controller advises pilots to change to the tower or advisory frequency. While conducting a visual approach, the pilot is responsible for providing safe obstacle clearance.

Contact Approaches

If conditions permit, pilots can request a contact approach, which is then authorized by the controller. A contact approach cannot be initiated by ATC. This procedure may be used instead of the published procedure to expedite arrival, as long as the airport has a SIAP the reported ground visibility is at least 1 SM, and pilots are able to remain clear of clouds with at least one statute mile flight visibility throughout the approach. Some advantages of a contact approach are that it usually requires less time than the published instrument procedure, it allows pilots to retain the IFR clearance, and provides separation from IFR and SVFR traffic. On the other hand, obstruction clearances and VFR traffic avoidance becomes the pilot’s responsibility. Unless otherwise restricted, the pilot may find it necessary to descend, climb, or fly a circuitous route to the airport to maintain cloud clearance or terrain/ obstruction clearance.

The main differences between a visual approach and a contact approach are: a pilot must request a contact approach, while a visual approach may be assigned by ATC or requested by the pilot; and a contact approach may be approved with one mile visibility if the flight can remain clear of clouds, while a visual approach requires the pilot to have the airport in sight, or a preceding aircraft to be followed, and the ceiling must be at least 1,000 feet AGL with at least 3 SM visibility.

Flight Literacy Recommends

Rod Machado's Instrument Pilot's Handbook -Flight Literacy recommends Rod Machado's products because he takes what is normally dry and tedious and transforms it with his characteristic humor, helping to keep you engaged and to retain the information longer. (see all of Rod Machado's Products).

Approaches (Part Twenty-One)

Filed Under: Approaches

Intermediate Approach Segment

The intermediate segment is designed primarily to position the aircraft for the final descent to the airport. Like the feeder route and initial approach segment, the chart depiction of the intermediate segment provides course, distance, and minimum altitude information.

 

The intermediate segment, normally aligned within 30° of the final approach course, begins at the IF, or intermediate point, and ends at the beginning of the final approach segment. In some cases, an IF is not shown on an approach chart. In this situation, the intermediate segment begins at a point where you are proceeding inbound to the FAF, are properly aligned with the final approach course, and are located within the prescribed distance prior to the FAF. An instrument approach that incorporates a procedure turn is the most common example of an approach that may not have a charted IF. The intermediate segment in this example begins when you intercept the inbound course after completing the procedure turn. [Figure 4-34]

Figure 4-34. Approach without a designated IF.
Figure 4-34. Approach without a designated IF. [click image to enlarge]

Final Approach Segment

The final approach segment for an approach with vertical guidance or a precision approach begins where the glideslope/glidepath intercepts the minimum glideslope/ glidepath intercept altitude shown on the approach chart. If ATC authorizes a lower intercept altitude, the final approach segment begins upon glideslope/glidepath interception at that altitude. For a non-precision approach, the final approach segment begins either at a designated FAF, which is depicted as a cross on the profile view, or at the point where the aircraft is established inbound on the final approach course. When a FAF is not designated, such as on an approach that incorporates an on-airport VOR or NDB, this point is typically where the procedure turn intersects the final approach course inbound. This point is referred to as the final approach point (FAP). The final approach segment ends at either the designated MAP or upon landing.

There are three types of procedures based on the final approach course guidance:

  • Precision approach (PA)—an instrument approach based on a navigation system that provides course and glidepath deviation information meeting precision standards of ICAO Annex 10. For example, PAR, ILS, and GLS are precision approaches.
  • Approach with vertical guidance (APV) —an instrument approach based on a navigation system that is not required to meet the precision approach standards of ICAO Annex 10, but provides course and glidepath deviation information. For example, Baro-VNAV, LDA with glidepath, LNAV/VNAV and LPV are APV approaches.
  • Non-precision approach (NPA)—an instrument approach based on a navigation system that provides course deviation information but no glidepath deviation information. For example, VOR, TACAN, LNAV, NDB, LOC, and ASR approaches are examples of NPA procedures.

Missed Approach Segment

The missed approach segment begins at the MAP and ends at a point or fix where an initial or en route segment begins. The actual location of the MAP depends upon the type of approach you are flying. For example, during a precision or an APV approach, the MAP occurs at the DA or DH on the glideslope/glidepath. For non-precision approaches, the MAP is either a fix, NAVAID, or after a specified period of time has elapsed after crossing the FAF.

Approach Clearance

According to FAA Order 7110.65, ATC clearances authorizing instrument approaches are issued on the basis that if visual contact with the ground is made before the approach is completed, the entire approach procedure is followed unless the pilot receives approval for a contact approach, is cleared for a visual approach, or cancels the IFR flight plan.

Approach clearances are issued based on known traffic. The receipt of an approach clearance does not relieve the pilot of his or her responsibility to comply with applicable parts of the CFRs and notations on instrument approach charts, which impose on the pilot the responsibility to comply with or act on an instruction, such as “procedure not authorized at night.” The name of the approach, as published, is used to identify the approach. Approach name items within parentheses are not included in approach clearance phraseology.

 

Vectors To Final Approach Course

The approach gate is an imaginary point used within ATC as a basis for vectoring aircraft to the final approach course. The gate is established along the final approach course one mile from the FAF on the side away from the airport and is no closer than 5 NM from the landing threshold. Controllers are also required to ensure the assigned altitude conforms to the following:

  • For a precision approach, at an altitude not above the glideslope/glidepath or below the minimum glideslope/glidepath intercept altitude specified on the approach procedure chart.
  • For a non-precision approach, at an altitude that allows descent in accordance with the published procedure. Further, controllers must assign headings that intercept the final approach course no closer than the following table:

A typical vector to the final approach course and associated approach clearance is as follows:

“…four miles from LIMAA, turn right heading three four zero, maintain two thousand until established on the localizer, cleared ILS runway three six approach.”

Other clearance formats may be used to fit individual circumstances, but the controller should always assign an altitude to maintain until the aircraft is established on a segment of a published route or IAP. The altitude assigned must guarantee IFR obstruction clearance from the point at which the approach clearance is issued until the aircraft is established on a published route. 14 CFR Part 91, § 91.175 (j) prohibits a pilot from making a procedure turn when vectored to a FAF or course, when conducting a timed approach, or when the procedure specifies “NO PT.”

When vectoring aircraft to the final approach course, controllers are required to ensure the intercept is at least 2 NM outside the approach gate. Exceptions include the following situations, but do not apply to RNAV aircraft being vectored for a GPS or RNAV approach:

  • When the reported ceiling is at least 500 feet above the MVA/MIA and the visibility is at least 3 SM (maybe a pilot report (PIREP) if no weather is reported for the airport), aircraft may be vectored to interceptthe final approach course closer than 2 NM outsidethe approach gate but no closer than the approach gate.
  • If specifically requested by the pilot, aircraft maybe vectored to intercept the final approach courseinside the approach gate but no closer than the FAF.

Flight Literacy Recommends

Rod Machado's Instrument Pilot's Handbook -Flight Literacy recommends Rod Machado's products because he takes what is normally dry and tedious and transforms it with his characteristic humor, helping to keep you engaged and to retain the information longer. (see all of Rod Machado's Products).

Approaches (Part Twenty)

Filed Under: Approaches

Course Reversal

Some approach procedures do not permit straight-in approaches unless pilots are being radar vectored. In these situations, pilots are required to complete a procedure turn (PT) or other course reversal, generally within 10 NM of the PT fix, to establish the aircraft inbound on the intermediate or final approach segment.

If Category E airplanes are using the PT or there is a descent gradient problem, the PT distance available can be as much as 15 NM. During a procedure turn, a maximum speed of 200 knots indicated airspeed (KIAS) should be observed from first crossing the course reversal IAF through the procedure turn maneuver to ensure containment within the obstruction clearance area. Unless a holding pattern or teardrop procedure is published, the point where pilots begin the turn and the type and rate of turn are optional. If above the procedure turn minimum altitude, pilots may begin descent as soon as they cross the IAF outbound.

A procedure turn is the maneuver prescribed to perform a course reversal to establish the aircraft inbound on an intermediate or final approach course. The procedure turn or hold-in-lieu-of procedure turn is a required maneuver when it is depicted on the approach chart. However, the procedure turn or the hold-in-lieu-of PT is not permitted when the symbol “No PT” is depicted on the initial segment being flown, when a RADAR VECTOR to the final approach course is provided, or when conducting a timed approach from a holding fix.

The altitude prescribed for the procedure turn is a minimum altitude until the aircraft is established on the inbound course. The maneuver must be completed within the distance specified in the profile view. This distance is usually 10 miles. This may be reduced to five miles where only Category A or helicopter aircraft are operated. This distance may be increased to as much as 15 miles to accommodate high performance aircraft.

The pilot may elect to use the procedure turn or hold-inlieu-of PT when it is not required by the procedure, but must first receive an amended clearance from ATC. When ATC is radar vectoring to the final approach course, or to the intermediate fix as may occur with RNAV standard instrument approach procedures, ATC may specify in the approach clearance “CLEARED STRAIGHT-IN (type) APPROACH” to ensure that the pilot understands that the procedure turn or hold-in-lieu-of PT is not to be flown. If the pilot is uncertain whether ATC intends for a procedure turn or a straight-in approach to be flown, the pilot will immediately request clarification from ATC.

On U.S. Government charts, a barbed arrow indicates the maneuvering side of the outbound course on which the procedure turn is made. Headings are provided for course reversal using the 45° type procedure turn. However, the point at which the turn may be commenced and the type and rate of turn is left to the discretion of the pilot (limited by the charted remain within XX NM distance). Some of the options are the 45° procedure turn, the racetrack pattern, the teardrop procedure turn, or the 80° procedure turn, or the 80° <–> 260° course reversal. Racetrack entries should be conducted on the maneuvering side where the majority of protected airspace resides. If an entry places the pilot on the non-maneuvering side of the PT, correction to intercept the outbound course ensures remaining within protected airspace.

Figure 4-32. Course reversal methods.
Figure 4-32. Course reversal methods. [click image to enlarge]
 

Some procedure turns are specified by procedural track. These turns must be flown exactly as depicted. These requirements are necessary to stay within the protected airspace and maintain adequate obstacle clearance. [Figure 4-32] A minimum of 1,000 feet of obstacle clearance is provided in the procedure turn primary area. [Figure 4-33] In the secondary area, 500 feet of obstacle clearance is provided at the inner edge, tapering uniformly to 0 feet at the outer edge.

Figure 4-33. Procedure turn obstacle clearance.
Figure 4-33. Procedure turn obstacle clearance. [click image to enlarge]
The primary and secondary areas determine obstacle clearance in both the entry and maneuvering zones. The use of entry and maneuvering zones provides further relief from obstacles. The entry zone is established to control the obstacle clearance prior to proceeding outbound from the procedure turn fix. The maneuvering zone is established to control obstacle clearance after proceeding outbound from the procedure turn fix.

Descent to the PT completion altitude from the PT fix altitude (when one has been published or assigned by ATC) must not begin until crossing over the PT fix or abeam and proceeding outbound. Some procedures contain a note in the chart profile view that says “Maintain (altitude) or above until established outbound for procedure turn.” Newer procedures simply depict an “at or above” altitude at the PT fix without a chart note. Both are there to ensure required obstacle clearance is provided in the procedure turn entry zone. Absence of a chart note or specified minimum altitude adjacent to the PT fix is an indication that descent to the procedure turn altitude can commence immediately upon crossing over the PT fix, regardless of the direction of flight. This is because the minimum altitudes in the PT entry zone and the PT maneuvering zone are the same.

 

A holding pattern-in-lieu-of procedure turn may be specified for course reversal in some procedures. In such cases, the holding pattern is established over an intermediate fix or a FAF. The holding pattern distance or time specified in the profile view must be observed. For a hold-in-lieu-of PT, the holding pattern direction must be flown as depicted and the specified leg length/timing must not be exceeded. Maximum holding airspeed limitations as set forth for all holding patterns apply. The holding pattern maneuver is completed when the aircraft is established on the inbound course after executing the appropriate entry. If cleared for the approach prior to returning to the holding fix and the aircraft is at the prescribed altitude, additional circuits of the holding pattern are not necessary nor expected by ATC. If pilots elect to make additional circuits to lose excessive altitude or to become better established on course, it is their responsibility to so advise ATC upon receipt of their approach clearance. Refer to the AIM section 5-4-9 for additional information on holding procedures.

Initial Approach Segment

The purposes of the initial approach segment are to provide a method for aligning the aircraft with the intermediate or final approach segment and to permit descent during the alignment. This is accomplished by using a DME arc, a course reversal, such as a procedure turn or holding pattern, or by following a terminal route that intersects the final approach course. The initial approach segment begins at an IAF and usually ends where it joins the intermediate approach segment or at an IF. The letters IAF on an approach chart indicate the location of an IAF and more than one may be available. Course, distance, and minimum altitudes are also provided for initial approach segments. A given procedure may have several initial approach segments. When more than one exists, each joins a common intermediate segment, although not necessarily at the same location.

Many RNAV approaches make use of a dual-purpose IF/ IAF associated with a hold-in-lieu-of PT (HILO) anchored at the Intermediate Fix. The HILO forms the Initial Approach Segment when course reversal is required.

When the PT is required, it is only necessary to enter the holding pattern to reverse course. The dual purpose fix functions as an IAF in that case. Once the aircraft has entered the hold and is returning to the fix on the inbound course, the dual-purpose fix becomes an IF, marking the beginning of the intermediate segment.

ATC may provide a vector to an IF at an angle of 90 degrees or less and specify “Cleared Straight-in (type) Approach”. In those cases, the radar vector is providing the initial approach segment and the pilot should not fly the PT without a clearance from ATC.

Occasionally, a chart may depict an IAF, although there is no initial approach segment for the procedure. This usually occurs at a point located within the en route structure where the intermediate segment begins. In this situation, the IAF signals the beginning of the intermediate segment.

Flight Literacy Recommends

Rod Machado's Instrument Pilot's Handbook -Flight Literacy recommends Rod Machado's products because he takes what is normally dry and tedious and transforms it with his characteristic humor, helping to keep you engaged and to retain the information longer. (see all of Rod Machado's Products).

Approaches (Part Nineteen)

Filed Under: Approaches

Example Approach Briefing

During an instrument approach briefing, the name of the airport and the specific approach procedure should be identified to allow other crewmembers the opportunity to cross-reference the chart being used for the brief. This ensures that pilots intending to conduct an instrument approach have collectively reviewed and verified the information pertinent to the approach. Figure 4-27 gives an example of the items to be briefed and their sequence. Although the following example is based on multi-crew aircraft, the process is also applicable to single-pilot operations. A complete instrument approach and operational briefing example follows.

Figure 4-27. Example of approach chart briefing sequence.
Figure 4-27. Example of approach chart briefing sequence.

The approach briefing begins with a general discussion of the ATIS information, weather, terrain, NOTAMs, approaches in use, runway conditions, performance considerations, expected route to the final approach course, and the traffic situation. As the discussion progresses, the items and format of the briefing become more specific. The briefing can also be used as a checklist to ensure that all items have been set up correctly. Most pilots verbally brief the specific MAP so that it is fresh in their minds and there is no confusion as to who is doing what during a missed approach. Also, it is a very good idea to brief the published missed approach even if the tower is most likely to give you alternate instructions in the event of a missed approach. A typical approach briefing might sound like the following example for a flight inbound to the Monroe Regional Airport (KMLU):

ATIS: “Monroe Regional Airport Information Bravo, time 2253 Zulu, wind 360 at 10, visibility 1 mile, mist, ceiling 300 overcast, temperature 4, dew point 3, altimeter 29.73, ILS Runway 4 approach in use, landing and departing Runway 4, advise on initial contact that you have information Bravo.”

PF: “We’re planning an ILS approach to Runway 4 at Monroe Regional Airport, page 270, effective date 22 Sep 11 to 20 Oct 11. Localizer frequency is 109.5, SABAR Locator Outer Marker is 392, Monroe VOR is 117.2, final approach course is 042º. We’ll cross SABAR at 1,483 feet barometric, decision altitude is 278 feet barometric, touchdown zone elevation is 78 feet with an airport elevation of 79 feet. MAP is climb to 2,000 feet, then climbing right turn to 3,000 feet direct Monroe VOR and hold. The MSA is 2,200 feet to the north and along our missed approach course, and 3,100 feet to the south along the final approach course. ADF or DME is required for the approach and the airport has pilot controlled lighting when the tower is closed, which does not apply to this approach. The runway has a medium intensity approach lighting system with runway alignment indicator lights and a precision approach path indicator (PAPI). We need a half- mile visibility so with one mile we should be fine. Runway length is 7,507 feet. I’m planning a flaps 30 approach, auto- brakes 2, left turn on Alpha or Charlie 1 then Alpha, Golf to the ramp. With a left crosswind, the runway should be slightly to the right. I’ll use the autopilot until we break out and, after landing, I’ll slow the aircraft straight ahead until you say you have control and I’ll contact ground once we are clear of the runway. In the case of a missed approach, I’ll press TOGA (Take-off/Go-Around button used on some turbojets), call ‘go-around thrust, flaps 15, positive climb, gear up, set me up,’ climb straight ahead to 2,000 feet then climbing right turn to 3,000 feet toward Monroe or we’ll follow the tower’s instructions. Any questions?”

PM: “I’ll back up the auto-speedbrakes. Other than that, I don’t have any questions.”

 

Instrument Approach Procedure Segments

An instrument approach may be divided into as many as four approach segments: initial, intermediate, final, and missed approach. Additionally, feeder routes provide a transition from the en route structure to the IAF. FAA Order 8260.3 criteria provides obstacle clearance for each segment of an approach procedure as shown in Figure 4-28.

Figure 4-28. Approach segments and obstacle clearance.
Figure 4-28. Approach segments and obstacle clearance. [click image to enlarge]

Feeder Routes

By definition, a feeder route is a route depicted on IAP charts to designate routes for aircraft to proceed from the en route structure to the IAF. [Figure 4-29 ] Feeder routes, also referred to as approach transitions, technically are not considered approach segments but are an integral part of many IAPs. Although an approach procedure may have several feeder routes, pilots normally choose the one closest to the en route arrival point. When the IAF is part of the en route structure, there may be no need to designate additional routes for aircraft to proceed to the IAF.

Figure 4-29. Feeder routes.
Figure 4-29. Feeder routes.

When a feeder route is designated, the chart provides the course or bearing to be flown, the distance, and the minimum altitude. En route airway obstacle clearance criteria apply to feeder routes, providing 1,000 feet of obstacle clearance (2,000 feet in mountainous areas).

 

Terminal Routes

In cases where the IAF is part of the en route structure and feeder routes are not required, a transition or terminal route is still needed for aircraft to proceed from the IAF to the intermediate fix (IF). These routes are initial approach segments because they begin at the IAF. Like feeder routes, they are depicted with course, minimum altitude, and distance to the IF. Essentially, these routes accomplish the same thing as feeder routes but they originate at an IAF, whereas feeder routes terminate at an IAF. [Figure 4-30 ]

Figure 4-30. Terminal routes.
Figure 4-30. Terminal routes.

DME Arcs

DME arcs also provide transitions to the approach course, but DME arcs are actually approach segments while feeder routes, by definition, are not. When established on a DME arc, the aircraft has departed the en route phase and has begun the approach and is maneuvering to enter an intermediate or final segment of the approach. DME arcs may also be used as an intermediate or a final segment, although they are extremely rare as final approach segments.

An arc may join a course at or before the IF. When joining a course at or before the IF, the angle of intersection of the arc and the course is designed so it does not exceed 120°. When the angle exceeds 90°, a radial that provides at least 2 NM of lead will be identified to assist in leading the turn on to the intermediate course. DME arcs are predicated on DME collocated with a facility providing omnidirectional course information, such as a VOR. A DME arc cannot be based on an ILS or LOC DME source because omnidirectional course information is not provided.

 

The ROC along the arc depends on the approach segment. For an initial approach segment, a ROC of 1,000 feet is required in the primary area, which extends to 4 NM on either side of the arc. For an intermediate segment primary area, the ROC is 500 feet. The initial and intermediate segment secondary areas extend 2 NM from the primary boundary area edge. The ROC starts at the primary area boundary edge at 500 feet and tapers to zero feet at the secondary area outer edge. [Figure 4-31]

Figure 4-31. DME arc obstruction clearance.
Figure 4-31. DME arc obstruction clearance. [click image to enlarge]

Flight Literacy Recommends

Rod Machado's Instrument Pilot's Handbook -Flight Literacy recommends Rod Machado's products because he takes what is normally dry and tedious and transforms it with his characteristic humor, helping to keep you engaged and to retain the information longer. (see all of Rod Machado's Products).

Approaches (Part Eighteen)

Filed Under: Approaches

Missed Approach

Many reasons exist for executing a missed approach. The primary reasons, of course, are that the required flight visibility prescribed in the IAP being used does not exist when natural vision is used under 14 CFR Part 91, § 91.175c, the required enhanced flight visibility is less than that prescribed in the IAP when an EFVS is used under 14 CFR Part 91, § 91.176, or the required visual references for the runway cannot be seen upon arrival at the DA, DH, or MAP. In addition, according to 14 CFR Part 91, the aircraft must continuously be in a position from which a descent to a landing on the intended runway can be made at a normal rate of descent using normal maneuvers, and for operations conducted under Part 121 or 135, unless that descent rate allows touchdown to occur within the TDZ of the runway of intended landing. CAT II and III approaches call for different visibility requirements as prescribed by the FAA Administrator.

Prior to initiating an instrument approach procedure, the pilot should assess the actions to be taken in the event of a balked (rejected) landing beyond the missed approach point or below the MDA or DA (H) considering the anticipated weather conditions and available aircraft performance. 14 CFR 91.175(e) authorizes the pilot to fly an appropriate missed approach procedure that ensures obstruction clearance, but it does not necessarily consider separation from other air traffic. The pilot must consider other factors such as the aircraft’s geographical location with respect to the prescribed missed approach point, direction of flight, and/ or the minimum turning altitudes in the prescribed missed approach procedure. The pilot must also consider aircraft performance, visual climb restrictions, charted obstacles, published obstacle departure procedure, takeoff visual climb requirements as expressed by nonstandard takeoff minima, other traffic expected to be in the vicinity, or other factors not specifically expressed by the approach procedures.

A clearance for an instrument approach procedure includes a clearance to fly the published missed approach procedure, unless otherwise instructed by ATC. Once descent below the DA, DH, or MDA is begun, a missed approach must be executed if the required visibility is lost or the runway environment is no longer visible, unless the loss of sight of the runway is a result of normal banking of the aircraft during a circling approach. A MAP is also required upon the execution of a rejected landing for any reason, such as men and equipment or animals on the runway, or if the approach becomes unstabilized and a normal landing cannot be performed. After the MAP in the visual segment of a non-precision approach, there may be hazards when executing a missed approach below the MDA. The published missed approach procedure provides obstacle clearance only when the missed approach is conducted on the missed approach segment from or above the missed approach point, and assumes a climb rate of 200 ft/NM or higher, as published. If the aircraft initiates a missed approach at a point other than the missed approach point, from below MDA or DA (H), or on a circling approach, obstacle clearance is not provided by following the published missed approach procedure, nor is separation assured from other air traffic in the vicinity.

The missed approach climb is normally executed at the MAP. If such a climb is initiated at a higher altitude prior to the MAP, pilots must be aware of any published climb-altitude limitations, which must be accounted for when commencing an early climb. Figure 4-23 gives an example of an altitude restriction that would prevent a climb between the FAF and MAP. In this situation, the Orlando Executive ILS or LOC RWY 7 approach altitude is restricted at the BUVAY 3 DME fix to prevent aircraft from penetrating the overlying protected airspace for approach routes into Orlando International Airport. If a missed approach is initiated before reaching BUVAY, a pilot may be required to continue descent to 1,200 feet before proceeding to the MAP and executing the missed approach climb instructions. In addition to the missed approach notes on the chart, the Pilot Briefing Information icons in the profile view indicate the initial vertical and lateral missed approach guidance.

Figure 4-23. Orlando Executive Airport, Orlando, Florida, ILS RWY 7.
Figure 4-23. Orlando Executive Airport, Orlando, Florida, ILS RWY 7.
 

The missed approach course begins at the MAP and continues until the aircraft has reached the designated fix and a holding pattern has been entered. [Figure 4-24] In these circumstances, ATC normally issues further instructions before the aircraft reaches the final fix of the missed approach course. It is also common for the designated fix to be an IAF so that another approach attempt can be made without having to fly from the holding fix to an IAF.

Figure 4-24 Missed approach procedures for Dallas-Fort Worth International (DFW)4
Figure 4-24 Missed approach procedures for Dallas-Fort Worth International (DFW)4

In the event a balked (rejected) landing occurs at a position other than the published missed approach point, the pilot should contact ATC as soon as possible to obtain an amended clearance. If unable to contact ATC for any reason, the pilot should attempt to re−intercept a published segment of the missed approach and comply with route and altitude instructions. If unable to contact ATC, and in the pilot’s judgment it is no longer appropriate to fly the published missed approach procedure, then consider either maintaining visual conditions (if possible) and reattempt a landing, or a circle−climb over the airport. Should a missed approach become necessary when operating to an airport that is not served by an operating control tower, continuous contact with an air traffic facility may not be possible. In this case, the pilot should execute the appropriate go−around/missed approach procedure without delay and contact ATC when able to do so.

 

As shown in Figure 4-25 , there are many different ways that the MAP can be depicted, depending on the type of approach. On all approach charts, it is depicted in the profile and plan views by the end of the solid course line and the beginning of the dotted missed approach course line for the top-line/ lowest published minima. For a precision approach, the MAP is the point at which the aircraft reaches the DA or DH while on the glideslope/ glidepath. MAPs on non-precision approaches can be determined in many different ways. If the primary NAVAID is on the airport, and either a VOR or NDB approach is being executed, the MAP is normally the point at which the aircraft passes the NAVAID.

Figure 4-25. Missed approach point depiction and steeper than standard climb gradient requirements.
Figure 4-25. Missed approach point depiction and steeper than standard climb gradient requirements.

On some non-precision approaches, the MAP is given as a fixed distance with an associated time from the FAF to the MAP based on the groundspeed of the aircraft. A table on the lower right or left hand side of the approach chart shows the distance in NM from the FAF to the MAP and the time it takes at specific groundspeeds, given in 30 knot increments. Pilots must determine the approximate groundspeed and time based on the approach speed and true airspeed of their aircraft and the current winds along the final approach course. A clock or stopwatch should be started at the FAF of an approach requiring this method. Many non-precision approaches designate a specific fix as the MAP. These can be identified by a course (LOC or VOR) and DME, a cross radial from a VOR, or an RNAV (GPS) waypoint.

 

Obstacles or terrain in the missed approach segment may require a steeper climb gradient than the standard 200 ft/NM. If a steeper climb gradient is required, a note is published on the approach chart plan view with the penetration description and examples of the required FPM rate of climb for a given groundspeed (future charting uses climb gradient). An alternative is normally charted that allows using the standard climb gradient. [Figure 4-25] In this example, if the missed approach climb requirements cannot be met for the Burbank ILS RWY 8 chart, the alternative is to use the LOC RWY 8 that is charted separately. The LOC RWY 8, S-8 procedure has a MDA that is 400 feet higher than the ILS RWY 8, S-LOC 8 MDA and meets the standard climb gradient requirement over the terrain. For some approaches a new charting standard is requiring two sets of minimums to be published when a climb gradient greater than 200 ft/NM is required. The first set of minimums is the lower of the two, requiring a climb gradient greater than 200 ft/NM. The second set of minimums is higher, but doesn’t require a climb gradient. Shown in Figure 4-26, Barstow-Daggett (KDAG) RNAV (GPS) RWY 26 is an example where there are two LPV lines of minimums.

Figure 4-26. Two sets of minimums required when a climb gradient greater than 200 ft/NM is required.
Figure 4-26. Two sets of minimums required when a climb gradient greater than 200 ft/NM is required.

Flight Literacy Recommends

Rod Machado's Instrument Pilot's Handbook -Flight Literacy recommends Rod Machado's products because he takes what is normally dry and tedious and transforms it with his characteristic humor, helping to keep you engaged and to retain the information longer. (see all of Rod Machado's Products).

Approaches (Part Seventeen)

Filed Under: Approaches

Descent Rates and Glidepaths for Nonprecision Approaches

Maximum Acceptable Descent Rates

Operational experience and research have shown that a descent rate of greater than approximately 1,000 fpm is unacceptable during the final stages of an approach (below 1,000 feet AGL). This is due to a human perceptual limitation that is independent of the type of airplane or helicopter. Therefore, the operational practices and techniques must ensure that descent rates greater than 1,000 fpm are not permitted in either the instrument or visual portions of an approach and landing operation.

For short runways, arriving at the MDA at the MAP when the MAP is located at the threshold may require a missed approach for some aircraft. For non-precision approaches, a descent rate should be used that ensures the aircraft reaches the MDA at a distance from the threshold that allows landing in the TDZ. On many IAPs, this distance is annotated by a VDP. If no VDP is annotated, calculate a normal descent point to the TDZ. To determine the required rate of descent, subtract the TDZE from the FAF altitude and divide this by the time inbound. For example, if the FAF altitude is 2,000 feet MSL, the TDZE is 400 feet MSL and the time inbound is two minutes, an 800 fpm rate of descent should be used.

To verify the aircraft is on an approximate three degree glidepath, use a calculation of 300 feet to 1 NM. The glidepath height above TDZE is calculated by multiplying the NM distance from the threshold by 300. For example, at 10 NM the aircraft should be 3,000 feet above the TDZE, at 5 NM the aircraft should be 1,500 feet above the TDZE, at 2 NM the aircraft should be 600 feet above the TDZE, and at 1.5 NM the aircraft should be 450 feet above the TDZE until a safe landing can be made. Using the example in the previous text, the aircraft should arrive at the MDA (800 feet MSL) approximately 1.3 NM from the threshold and in a position to land within the TDZ. Techniques for deriving a 300-to-1 glide path include using DME, distance advisories provided by radar-equipped control towers, RNAV, GPS, dead reckoning, and pilotage when familiar features on the approach course are visible. The runway threshold should be crossed at a nominal height of 50 feet above the TDZE.

Transition to a Visual Approach

The transition from instrument flight to visual flight during an instrument approach can be very challenging, especially during low visibility operations. Aircrews should use caution when transitioning to a visual approach at times of shallow fog. Adequate visibility may not exist to allow flaring of the aircraft. Aircrews must always be prepared to execute a missed approach/go-around. Additionally, single-pilot operations make the transition even more challenging. Approaches with vertical guidance add to the safety of the transition to visual because the approach is already stabilized upon visually acquiring the required references for the runway. 100 to 200 feet prior to reaching the DA, DH, or MDA, most of the PM’s attention should be outside of the aircraft in order to visually acquire at least one visual reference for the runway, as required by the regulations. The PF should stay focused on the instruments until the PM calls out any visual aids that can be seen, or states “runway in sight.”The PF should then begin the transition to visual flight. It is common practice for the PM to call out the V/S during the transition to confirm to the PF that the instruments are being monitored, thus allowing more of the PF’s attention to be focused on the visual portion of the approach and landing. Any deviations from the stabilized approach criteria should also be announced by the PM.

Single-pilot operations can be much more challenging because the pilot must continue to fly by the instruments while attempting to acquire a visual reference for the runway. While it is important for both pilots of a two-pilot aircraft to divide their attention between the instruments and visual references, it is even more critical for the single- pilot operation. The flight visibility must also be at least the visibility minimum stated on the instrument approach chart, or as required by regulations. CAT II and III approaches have specific requirements that may differ from CAT I precision or non-precision approach requirements regarding transition to visual and landing. This information can be found in the operator’s OpSpecs or FOM.

Figure 4-21. Determination of visibility minimums.
Figure 4-21. Determination of visibility minimums.

The visibility published on an approach chart is dependent on many variables, including the height above touchdown for straight-in approaches or height above airport elevation for circling approaches. Other factors include the approach light system coverage, and type of approach procedure, such as precision, non-precision, circling or straight-in. Another factor determining the minimum visibility is the penetration of the 34:1 and 20:1 surfaces. These surfaces are inclined planes that begin 200 feet out from the runway and extend outward to the DA point (for approaches with vertical guidance), the VDP location (for non-precision approaches) and 10,000 feet for an evaluation to a circling runway. If there is a penetration of the 34:1 surface, the published visibility can be no lower than three-fourths SM.

 

If there is penetration of the 20:1 surface, the published visibility can be no lower than 1 SM with a note prohibiting approaches to the affected runway at night (both straightin and circling). [Figure 4-21 ] Circling may be permitted at night if penetrating obstacles are marked and lighted. If the penetrating obstacles are not marked and lighted, a note is published that night circling is “Not Authorized.” Pilots should be aware of these penetrating obstacles when entering the visual and/or circling segments of an approach and take adequate precautions to avoid them. For RNAV approaches only, the presence of a grey shaded line from the MDA to the runway symbol in the profile view is an indication that the visual segment below the MDA is clear of obstructions on the 34:1 slope. Absence of the gray shaded area indicates the 34:1 OCS is not free of obstructions. [Figure 4-22]

Figure 4-22. RNAV approach Fort Campbell, Kentucky.
Figure 4-22. RNAV approach Fort Campbell, Kentucky.

Flight Literacy Recommends

Rod Machado's Instrument Pilot's Handbook -Flight Literacy recommends Rod Machado's products because he takes what is normally dry and tedious and transforms it with his characteristic humor, helping to keep you engaged and to retain the information longer. (see all of Rod Machado's Products).

Approaches (Part Sixteen)

Filed Under: Approaches

Autopilot Modes

In general, an autopilot can be used to fly approaches even if the FMC is inoperative (refer to the specific aircraft’s minimum equipment list (MEL) to determine authorization for operating with the FMC inoperative). Whether or not the FMC is available, use of the autopilot should be discussed during the approach briefing, especially regarding the use of the altitude pre-selector and auto-throttles, if equipped. The AFM for the specific aircraft outlines procedures and limitations required for the use of the autopilot during an instrument approach in that aircraft.

There are just as many different autopilot modes to climb or descend the aircraft, as there are terms for these modes. Some examples are level change (LVL CHG), vertical speed (V/S), VNAV, and takeoff/go around (TO/GA). The pilot controls the aircraft through the autopilot by selecting pitch modes and/or roll modes, as well as the associated auto-throttle modes. This panel, sometimes called a mode control panel, is normally accessible to both pilots. Most aircraft with sophisticated auto-flight systems and auto-throttles have the capability to select modes that climb with maximum climb thrust and descend with the throttles at idle (LVL CHG, flight level change (FL CHG), and manage level). They also have the capability to capture, or level off at pre-selected altitudes, as well as track a LOC and glideslope (G/S) or a VOR course. If the aircraft is RNAV-equipped, the autopilot also tracks the RNAV-generated course. Most of these modes are used at some point during an instrument approach using the autopilot. Additionally, these modes can be used to provide flight director (FD) guidance to the pilot while hand-flying the aircraft.

For the purposes of this precision approach example, the auto-throttles are engaged when the autopilot is engaged and specific airspeed and configuration changes are not discussed. The PF controls airspeed with the speed selector on the mode control panel and calls for flaps and landing gear as needed, which the PM selects. The example in Figure 4-20 begins with the airplane 5 NM northwest of KNUCK at 4,500 feet with the autopilot engaged, and the flight has been cleared to track the Rwy 12 LOC inbound. The current roll mode is LOC with the PF’s NAV radio tuned to the LOC frequency of 109.3; and the current pitch mode is altitude hold (ALT HOLD). Approach control clears the aircraft for the approach. The PF makes no immediate change to the autopilot mode to prevent the aircraft from capturing a false glideslope; but the PM resets the altitude selector to 1,700 feet. The aircraft remains level because the pitch mode remains in ALT HOLD until another pitch mode is selected. Upon reaching KNUCK, the PF selects LVL CHG as the pitch mode. The auto-throttles retard to idle as the airplane begins a descent. Approaching 1,700 feet, the pitch mode automatically changes to altitude acquire (ALT ACQ) then to ALT HOLD as the aircraft levels at 1,700 feet. In addition to slowing the aircraft and calling for configuration changes, the PF selects approach mode (APP). The roll mode continues to track the LOC and the pitch mode remains in ALT HOLD; however, the G/S mode arms. Selecting APP once the aircraft has leveled at the FAF altitude is a suggested technique to ensure that the aircraft captures the glideslope from below and that a false glideslope is not being tracked.

Figure 4-20. Example approaches using autopilot.
Figure 4-20. Example approaches using autopilot.

The PF should have the aircraft fully configured for landing before intercepting the glideslope to ensure a stabilized approach. As the aircraft intercepts the glideslope the pitch mode changes to G/S. Once the glideslope is captured by the autopilot, the PM can select the missed approach altitude in the altitude pre-selector, as requested by the PF. The aircraft continues to track the glideslope. The minimum altitude at which the PF is authorized to disconnect the autopilot is aircraft specific. For example, 50 feet below DA, DH, or MDA but not less than 50 feet AGL. The PF can disconnect the autopilot at any time prior to reaching this altitude during a CAT I approach. The initial missed approach is normally hand flown with FD guidance unless both autopilots are engaged for auto-land during a CAT II or III approach.

 

The differences when flying the underlying non-precision approach begin when the aircraft has leveled off at 1,700 feet. Once ALT HOLD is annunciated, the MDA is selected by the PM as requested by the PF. It is extremely important for both pilots to be absolutely sure that the correct altitude is selected for the MDA so that the aircraft does not inadvertently descend below the MDA. For aircraft that the altitude pre-selector can only select 100 foot increments, the MDA for this approach must be set at 700 feet instead of 660 feet.

Vertical speed mode is used from the FAF inbound to allow for more precise control of the descent. If the pilots had not selected the MDA in the altitude pre-selector window, the PF would not be able to input a V/S and the aircraft would remain level. The autopilot mode changes from ALT ACQ to ALT HOLD as the aircraft levels at 700 feet. Once ALT HOLD is annunciated, the PF calls for the missed approach altitude of 5,000 feet to be selected in the altitude pre-selector window. This step is very important because accurate FD guidance is not available to the PF during a missed approach if the MDA is left in the window.

Note: See“Maximum Acceptable Descent Rates”under the heading “Descent Rates and Glide paths for Non-precision Approaches.”

Descents

Stabilized Approach

In IMC, you must continuously evaluate instrument information throughout an approach to properly maneuver the aircraft or monitor autopilot performance and to decide on the proper course of action at the decision point (DA, DH, or MAP). Significant speed and configuration changes during an approach can seriously degrade situational awareness and complicate the decision of the proper action to take at the decision point. The swept wing handling characteristics at low airspeeds and slow engine response of many turbojets further complicate pilot tasks during approach and landing operations. You must begin to form a decision concerning the probable success of an approach before reaching the decision point. Your decision-making process requires you to be able to determine displacements from the course or glideslope/glidepath centerline, to mentally project the aircraft’s three-dimensional flight path by referring to flight instruments, and then apply control inputs as necessary to achieve and maintain the desired approach path. This process is simplified by maintaining a constant approach speed, descent rate, vertical flight path, and configuration during the final stages of an approach. This is referred to as the stabilized approach concept.

 

A stabilized approach is essential for safe turbojet operations and commercial turbojet operators must establish and use procedures that result in stabilized approaches. A stabilized approach is also strongly recommended for propeller-driven airplanes and helicopters. You should limit configuration changes at low altitudes to those changes that can be easily accommodated without adversely affecting your workload. For turbojets, the aircraft must be in an approved configuration for landing or circling, if appropriate, with the engines spooled up, and on the correct speed and flight path with a descent rate of less than 1,000 fpm before descending below the following minimum stabilized approach heights:

  • For all straight-in instrument approaches, to include contact approaches in IFR weather conditions, theapproach must be stabilized before descendingbelow 1,000 feet above the airport or TDZE.
  • For visual approaches and straight-in instrumentapproaches in VFR weather conditions, the approach must be stabilized before descending below 500 feet above the airport elevation.
  • For the final segment of a circling approachmaneuver, the approach must be stabilized 500 feet above the airport elevation or at the MDA, whichever is lower. These conditions must be maintainedthroughout the approach until touchdown for theapproach to be considered a stabilized approach.This also helps you to recognize a wind shearsituation should abnormal indications exist duringthe approach.

Flight Literacy Recommends

Rod Machado's Instrument Pilot's Handbook -Flight Literacy recommends Rod Machado's products because he takes what is normally dry and tedious and transforms it with his characteristic humor, helping to keep you engaged and to retain the information longer. (see all of Rod Machado's Products).

Approaches (Part Fifteen)

Filed Under: Approaches

LNAV, LNAV/VNAV and Circling Minimums

There are some RNAV procedures with lower non-precision LNAV minimums [Figure 4-17] than vertically-guided LNAV/VNAV minimums. Circling procedures found on the same approach chart may also have lower minimums than the vertically-guided LNAV/VNAV procedure. Each RNAV procedure is evaluated independently and different approach segments have differing required obstacle clearance (ROC) values, obstacle evaluation area (OEA) dimensions and final segment types. Figure 4-18 explains the differences.

Figure 4-17. Example of LNAV and Circling Minima lower than LNAV/VNAV DA. Harrisburg International RNAV (GPS) Runway 13.
Figure 4-17. Example of LNAV and Circling Minima lower than LNAV/VNAV DA. Harrisburg International RNAV (GPS) Runway 13.
Figure 4-18. Explanation of Minima.
Figure 4-18. Explanation of Minima.

Airport/Runway Information

Another important piece of a thorough approach briefing is the discussion of the airport and runway environment. A detailed examination of the runway length (this must include the A/FD section of the CS for the landing distance available), the intended turnoff taxiway, and the route of taxi to the parking area, are all important briefing items. In addition, runway conditions should be discussed. The effect on the aircraft’s performance must be considered if the runway is contaminated.

FAA approach charts include a runway sketch on each approach chart to make important airport information easily accessible to pilots. In addition, at airports that have complex runway/taxiway configurations, a separate full-page airport diagram is published.

The airport diagram also includes the latitude/longitude information required for initial programming of FMS equipment. The included latitude/longitude grid shows the specific location of each parking area on the airport surface for use in initializing FMS. Figure 4-19 shows the airport sketch and diagram for Chicago-O’Hare International Airport (KORD).

Figure 4-19. Airport sketch and diagram for Chicago O'Hare International.
Figure 4-19. Airport sketch and diagram for Chicago O’Hare International.

Pilots making approaches to airports that have this type of complex runway and taxiway configuration must ensure that they are familiar with the airport diagram prior to initiating an instrument approach. A combination of poor weather, high traffic volume, and high ground controller workload makes the pilot’s job on the ground every bit as critical as the one just performed in the air.

 

Instrument Approach Procedure (IAP) Briefing

A thorough instrument approach briefing greatly increases the likelihood of a successful instrument approach. Most Part 121, 125, and 135 operators designate specific items to be included in an IAP briefing, as well as the order in which those items are briefed.

Before an IAP briefing can begin, flight crews must decide which procedure is most likely to be flown from the information that is available to them. Most often, when the flight is being conducted into an airport that has ATIS information, the ATIS provides the pilots with the approaches that are in use. If more than one approach is in use, the flight crew may have to make an educated guess as to which approach will be issued to them based on the weather, direction of their arrival into the area, any published airport NOTAMs, and previous contact with the approach control facility. Aircrews can query ATC as to which approach is to be expected from the controller. Pilots may request specific approaches to meet the individual needs of their equipment or regulatory restrictions at any time and ATC will, in most cases, be able to accommodate those requests, providing that workload and traffic permit.

If the flight is operating into an airport without a control tower, the flight crew is occasionally given the choice of any available instrument approach at the field. In these cases, the flight crew must choose an appropriate approach based on the expected weather, aircraft performance, direction of arrival, airport NOTAMs, and previous experience at the airport.

Navigation and Communication Radios

Once the anticipated approach and runway have been selected, each crewmember sets up their side of the flight deck. The pilots use information gathered from ATIS, dispatch (if available), ATC, the specific approach chart for the approach selected, and any other sources that are available. Company regulations dictate how certain things are set up and others are left up to pilot technique. In general, the techniques used at most companies are similar. This section addresses two-pilot operations. During single-pilot IFR flights, the same items must be set up and the pilot should still do an approach briefing to verify that everything is set up correctly.

The number of items that can be set up ahead of time depends on the level of automation of the aircraft and the avionics available. In a conventional flight deck, the only things that can be set up, in general, are the airspeed bugs (based on performance calculations), altimeter bug (to DA, DH, or MDA), go around thrust/power setting, the radio altimeter bug (if installed and needed for the approach), and the navigation/communication radios (if a standby frequency selector is available). The standby side of the PF navigation radio should be set to the primary NAVAID for the approach and the PM navigation radio standby selector should be set to any other NAVAIDs that are required or available, and as dictated by company procedures, to add to the overall situational awareness of the crew. The ADF should also be tuned to an appropriate frequency as required by the approach, or as selected by the crew. Aircrews should, as much as possible, set up the instruments for best success in the event of a vacuum or electrical failure. For example, if the aircraft will only display Nav 1 on battery or emergency power, aircrews should ensure that Nav 1 is configured to the primary NAVAID for the final approach to be flown.

 

Flight Management System (FMS)

In addition to the items that are available on a conventional flight deck aircraft, glass flight deck aircraft, as well as aircraft with an approved RNAV (GPS) system, usually give the crew the ability to set the final approach course for the approach selected and many other options to increase situational awareness. Crews of FMS equipped aircraft have many options available as far as setting up the flight management computer (FMC), depending on the type of approach and company procedures. The PF usually programs the FMC for the approach and the PM verifies the information. A menu of available approaches is usually available to select from based on the destination airport programmed at the beginning of the flight or a new destination selected while en route.

The amount of information provided for the approach varies from aircraft to aircraft, but the crew can make modifications if something is not pre-programmed into the computer, such as adding a MAP or even building an entire approach for situational awareness purposes only. The PF can also program a VNAV profile for the descent and LNAV for segments that were not programmed during preflight, such as a standard terminal arrival route (STAR) or expected route to the planned approach. Any crossing restrictions for the STAR might need to be programmed as well. The most common crossing restrictions, whether mandatory or “to be expected,” are usually automatically programmed when the STAR is selected, but can be changed by ATC at any time. Other items that need to be set up are dictated by aircraft-specific procedures, such as autopilot, auto-throttles, auto-brakes, pressurization system, fuel system, seat belt signs, anti-icing/ deicing equipment, and igniters.

Flight Literacy Recommends

Rod Machado's Instrument Pilot's Handbook -Flight Literacy recommends Rod Machado's products because he takes what is normally dry and tedious and transforms it with his characteristic humor, helping to keep you engaged and to retain the information longer. (see all of Rod Machado's Products).

  • « Go to Previous Page
  • Go to page 1
  • Go to page 2
  • Go to page 3
  • Go to page 4
  • Go to page 5
  • Interim pages omitted …
  • Go to page 9
  • Go to Next Page »

Primary Sidebar

SEARCH FLIGHT LITERACY

Basic Flight Training

Basic Aircraft Flight
Aeronautical Knowledge
Airplane Ownership - General Aviation
Training Aids

Advanced Flight Training

Instrument Flight Rules
Instrument Procedures
Flight Navigation
Aircraft Weight and Balance
Advanced Avionics
Risk Management
Aviation Instructor Training
Glider Flying
Weight-Shift-Control Aircraft
Helicopter Flight Training
Aircraft Mechanic (flight-mechanic.com)

Contact Us | Privacy Policy | Terms of Use
Easy Campfire Recipes | Recipe Workbook


Please help support our work
HIT THE TIP JAR

Copyright © 2022 FlightLiteracy.com




.