• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

Flight Literacy

Flight Training Educational Materials

  • Home
  • Basic Flight Training
    • Basic Aircraft Flight
    • Aeronautical Knowledge
    • Airplane Ownership – General Aviation Information
  • Advanced Flight Training
    • Instrument Flight Rules
    • Instrument Procedures
    • Flight Navigation
    • Aircraft Weight and Balance
    • Advanced Avionics
    • Risk Management
    • Aviation Instructor Training
    • Glider Flying
    • Weight-Shift Control Aircraft Flight
    • Helicopter Flight Training
    • Advisory Circulars
  • Training Aids
You are here: Home / Instrument Procedures / Departure Procedures / Departure Procedures (Part Eight)

Departure Procedures (Part Eight)

Filed Under: Departure Procedures

Categories of Departure Procedures

There are two types of DPs: those developed to assist pilots in obstruction avoidance, known as ODPs, printed either textually or graphically, and those developed to communicate ATC clearances, SIDs, always printed graphically.

 

Obstacle Departure Procedures (ODPs)

The term ODP is used to define procedures that simply provide obstacle clearance. ODPs are only used for obstruction clearance and do not include ATC-related climb requirements. In fact, the primary emphasis of ODP design is to use the least restrictive route of flight to the en route structure or to facilitate a climb to an altitude that allows random (diverse) IFR flight, while attempting to accommodate typical departure routes.

An ODP must be developed when obstructions penetrate the 40:1 departure OCS, as described in FAA Order 8260.3. Only one ODP will be established for a particular runway. This is considered the default IFR departure procedure for a given runway and is intended for pilot awareness and use in the absence of ATC radar vectors or SID assignment. Text is not published to allow an option to use a SID or alternate maneuver assigned by ATC (e.g., “Climb heading 330 to 1200 before turning or use Manchester Departure” or “Turn right, climb direct ABC very high frequency (VHF) omnidirectional range (VOR) or as assigned by ATC.”). ODPs are textual in nature. However, due to the complex nature of some procedures, a visual presentation may be necessary for clarification and understanding. If the ODP is charted graphically, the chart itself includes the word “Obstacle” in parentheses in the title. Additionally, all newly-developed RNAV ODPs are issued in graphical form.

All ODPs are listed in the front of the Aeronautical Information Services approach chart booklets under the heading Takeoff Minimums and Obstacle Departure Procedures. Each procedure is listed in alphabetical order by city and state. The ODP listing in the front of the booklet includes a reference to the graphic chart located in the main body of the booklet if one exists. [Figure 1-21]

Figure 1-21. Graphic ODP/booklet front matter.
Figure 1-21. Graphic ODP/booklet front matter. [click image to enlarge]

ODP Flight Planning Considerations

ODPs are not assigned by ATC unless absolutely necessary to achieve aircraft separation. It is the pilot’s responsibility to determine if there is an ODP published for that airport. If a Part 91 pilot is not given a clearance containing an ODP, SID, or radar vectors and an ODP exists, compliance with such a procedure is the pilot’s choice. A graphic ODP may also be filed in an instrument flight plan by using the computer code included in the procedure title. As a technique, the pilot may enter “will depart (airport) (runway) via textual ODP” in the remarks section of the flight plan. Providing this information to the controller clarifies the intentions of the pilot and helps prevent a potential pilot/controller misunderstanding. If the ODP is not included in the pilot’s clearance, the pilot should inform ATC when an ODP is used for departure from a runway so that ATC can ensure appropriate traffic separation.

Secrets of Instrument Approaches and DeparturesFlight Literacy Recommends

Rod Machado's Secrets of Instrument Approaches and Departures – If you’re an active IFR pilot or preparing for an IPC or even your ATP or IFR rating, then this interactive course is for you. The IFR pilot’s weakest link is approach and departure knowledge as it relates to instrument charts.

During planning, pilots need to determine whether or not the departure airport has an ODP. Remember, an ODP can only be established at an airport that has instrument approach procedures (IAPs). An ODP may drastically affect the initial part of the flight plan. Pilots may have to depart at a higher than normal climb rate, or depart in a direction opposite the intended heading and maintain that for a period of time, any of which would require an alteration in the flight plan and initial headings. Considering the forecast weather, departure runways, and existing ODP, plan the flight route, climb performance, and fuel burn accordingly to compensate for the departure procedure.

Additionally, when close-in obstacles are noted in the Takeoff Minimums and (Obstacle) Departure Procedures section, it may require the pilot to take action to avoid these obstacles. Consideration must be given to decreased climb performance from an inoperative engine or to the amount of runway used for takeoff. Aircraft requiring a short takeoff roll on a long runway may have little concern. On the other hand, airplanes that use most of the available runway for takeoff may not have the standard ROC when climbing at the normal 200 ft/NM.

Another factor to consider is the possibility of an engine failure during takeoff and departure. During the preflight planning, use the aircraft performance charts to determine if the aircraft can still maintain the required climb performance. For high performance aircraft, an engine failure may not impact the ability to maintain the prescribed climb gradients. Aircraft that are performance limited may have diminished capability and may be unable to maintain altitude, let alone complete a climb to altitude. Based on the performance expectations for the aircraft, construct an emergency plan of action that includes emergency checklists and the actions to take to ensure safety in this situation.

Standard Instrument Departures (SIDs)

A SID is an ATC-requested and developed departure route, typically used in busy terminal areas. It is designed at the request of ATC in order to increase capacity of terminal airspace, effectively control the flow of traffic with minimal communication, and reduce environmental impact through noise abatement procedures.

While obstacle protection is always considered in SID routing, the primary goal is to reduce ATC/pilot workload while providing seamless transitions to the en route structure. ATC clearance must be received prior to flying a SID. SIDs also provide additional benefits to both the airspace capacity and the airspace users by reducing radio congestion, allowing more efficient airspace use, and simplifying departure clearances. All of the benefits combine to provide effective, efficient terminal operations, thereby increasing the overall capacity of the NAS.

If you cannot comply with a SID, if you do not possess the charted SID procedure, or if you simply do not wish to use SIDs, include the statement “NO SIDs” in the remarks section of your flight plan. Doing so notifies ATC that they cannot issue you a clearance containing a SID, but instead will clear you via your filed route to the extent possible, or via a Preferential Departure Route (PDR). It should be noted that SID usage not only decreases clearance delivery time, but also greatly simplifies your departure, easing you into the IFR structure at a desirable location and decreases your flight management load. While you are not required to depart using a SID, it may be more difficult to receive an “as filed” clearance when departing busy airports that frequently use SID routing.

SIDs are always charted graphically and are located in the TPP after the last approach chart for an airport. The SID may be one or two pages in length, depending on the size of the graphic and the amount of space required for the departure description. Each chart depicts the departure route, navigational fixes, transition routes, and required altitudes. The departure description outlines the particular procedure for each runway. [Figure 1-22]

Figure 1-22. SID chart.
Figure 1-22. SID chart. [click image to enlarge]

Flight Literacy Recommends

Rod Machado's Instrument Pilot's Handbook -Flight Literacy recommends Rod Machado's products because he takes what is normally dry and tedious and transforms it with his characteristic humor, helping to keep you engaged and to retain the information longer. (see all of Rod Machado's Products).

Primary Sidebar

SEARCH FLIGHT LITERACY

Basic Flight Training

Basic Aircraft Flight
Aeronautical Knowledge
Airplane Ownership - General Aviation
Training Aids

Advanced Flight Training

Instrument Flight Rules
Instrument Procedures
Flight Navigation
Aircraft Weight and Balance
Advanced Avionics
Risk Management
Aviation Instructor Training
Glider Flying
Weight-Shift-Control Aircraft
Helicopter Flight Training
Aircraft Mechanic (flight-mechanic.com)

Contact Us | Privacy Policy | Terms of Use
Easy Campfire Recipes | Recipe Workbook


Copyright © 2021 FlightLiteracy.com