• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

Flight Literacy

Flight Training Educational Materials

  • Home
  • Basic Flight Training
    • Basic Aircraft Flight
    • Aeronautical Knowledge
    • Airplane Ownership – General Aviation Information
  • Advanced Flight Training
    • Instrument Flight Rules
    • Instrument Procedures
    • Flight Navigation
    • Aircraft Weight and Balance
    • Advanced Avionics
    • Risk Management
    • Aviation Instructor Training
    • Glider Flying
    • Weight-Shift Control Aircraft Flight
    • Helicopter Flight Training
    • Advisory Circulars
  • Training Aids
  • Tip Jar
You are here: Home / Glider Flying / Glider Launch Recovery Procedures and Flight Maneuvers / Glider Ground Launch Takeoff Procedures (Part One)
Regretfully, FlightLiteracy (formerly FlightLearnings) will be turning out the lights after fifteen years. Google, in its infinite wisdom, has chosen to remove FlightLiteracy from its search results (the claim is that the content on this site is spam). We appealed their decision to shut us down, to no avail.

Unfortunately, since Google has a monopoly over internet search, this means that traffic levels on the site will drop to a level that makes maintaining it uneconomic. As time progresses, we will no longer be able to maintain the server space and will remove the site from the internet. Thanks to all who have supported us over the years.

To fight back against the monopolistic practices of companies like Google, we recommend using a competing search engine such as Brave (you get the added benefit of not being spied on by Big Tech) and advocating for anti-trust legislation from your representatives.

Glider Ground Launch Takeoff Procedures (Part One)

Filed Under: Glider Launch Recovery Procedures and Flight Maneuvers

When ground launching, it is essential to use a center of gravity (CG) towhook that has an automatic back release feature. This protects the glider if the pilot is unable to release the towline during the launch. The failure of the tow release could cause the glider to be pulled to the ground as it flies over the launching vehicle or winch. Since the back release feature of the towhook is so important, it should be tested prior to every flight. [Figure 7-13]

Figure 7-13. Testing the towhook.
Figure 7-13. Testing the towhook.

CG Hooks

Some training and high-performance gliders have only a CG towhook. CG towhooks are necessary for ground launch operations so the glider is not pulled into the ground. Attachment at the center of gravity allows the glider pilot to have full control of the glider without undue influence from the ground pull. Attachment of a ground launch towline to the nose hook would tend to pull the glider into the ground and would overload the horizontal stabilizer and elevator. Conversely, depending on design, the CG hook may not have sufficient movement to fully release an aerotow line under pressure. If the hook only swings about 90° down, the towline may stay hung on the gliders hook until the pressure is released and slack allows the towline to simply fall off. It may be located either ahead of the landing gear, in the landing gear well, or the glider may utilize a bracket that attaches outside on the fuselage near the cockpit.

How to Fly an AirplaneFlight Literacy Recommends

Rod Machado's How to Fly an Airplane Handbook – Learn the basic fundamentals of flying any airplane. Make flight training easier, less expensive, and more enjoyable. Master all the checkride maneuvers. Learn the "stick and rudder" philosophy of flying. Prevent an airplane from accidentally stalling or spinning. Land a plane quickly and enjoyably.

If the CG hook is in the landing gear well, retracting the gear on tow interferes with the towline. Even if the glider has a nose hook, retracting the gear on tow is not recommended until the aircraft is safely airborne and an immediate or emergency return is not necessary. Leaving the gear down allows the glider pilot more time to assess the best landing options.

A CG hook, as compared to a nose hook, makes a crosswind takeoff more difficult since the glider can weathervane into the wind more easily. In addition, a CG hook makes the glider more susceptible to kiting on takeoff, especially if the CG is near the aft limit. This can present a serious danger to the towplane during the aerotow.

Signals

Prelaunch Signals (Winch/Automobile)

Prelaunch visual signals for a ground launch operation allow the glider pilot, the wing runner, the safety officer, and the launch crew to communicate over considerable distances. When launching with an automobile, the glider and launch automobile may be 1,000 feet or more apart. When launching with a winch, the glider may start the launch 4,000 feet or more from the winch. Because of the great distances involved, members of the ground launch crew use colored flags or large paddles to enhance visibility, as shown in Figure 7-14. When complex information must be relayed over great distances, visual prelaunch signals can be augmented with direct voice communications between crewmember stations. Hard-wired ground telephones, two-way radios, or wireless telephones can be used to communicate between stations, adding protection against premature launch and facilitating an aborted launch if an unsafe condition arises. The towline should never be attached to the glider until the crew is onboard and ready to launch.

Figure 7-14. Winch and aerotow prelaunch signals.
Figure 7-14. Winch and aerotow prelaunch signals.

Inflight Signals

Since ground launches are of short duration, inflight signals for ground launches are limited to signals to the winch operator or ground vehicle driver to increase or decrease speed. [Figure 7-15]

Figure 7-15. Inflight signals for ground launch.
Figure 7-15. Inflight signals for ground launch.

Tow Speeds

Proper ground launch tow speed is critical for a safe launch. Figure 7-16 compares various takeoff profiles that result when tow speeds vary above or below the correct speed.

Figure 7-16. Ground launch tow speed.
Figure 7-16. Ground launch tow speed.

Each glider certificated for ground launch operations has a placarded maximum ground launch tow speed. This speed is normally the same for automobile or winch launches. The glider pilot should fly the launch staying at or below this speed to prevent structural damage to the glider during the ground tow.

Automobile Launch

Automobile launches today are very rare. During automobile ground launches, the glider pilot and driver should have a thorough understanding of the groundspeeds to be used prior to any launch. Before the first launch, the pilot and vehicle driver should determine the appropriate vehicle ground tow speeds, considering the surface wind velocity, the glider speed increase during launch, and the wind gradient encountered during the climb. They should include a safety factor to avoid exceeding this maximum vehicle ground tow speed.

If a crosswind condition is present, the glider should be positioned slightly downwind of the takeoff heading and angled into the wind to help eliminate control problems until sufficient airspeed is obtained. Due to the slow acceleration of the glider during an automobile ground launch, the towline should be laid out to allow the glider to obtain sufficient speed for control while still in a headwind. [Figure 7-17]

Figure 7-17. Ground launch procedures.
Figure 7-17. Ground launch procedures.

The tow speed can be determined by using the following calculations:

  1. Subtract the surface winds from the maximum placarded ground launch tow speed for the particular glider.
  2. Subtract an additional five miles per hour (mph) for the airspeed increase during the climb.
  3. Subtract the estimated wind gradient increase encountered during the climb.
  4. Subtract a 5 mph safety factor.
Maximum ground launch tow speed75 mph
1. Surface winds 10 mph–10 mph
2. Airspeed increase during climb 5 mph–5 mph
3. Estimated climb wind gradient 5 mph–5 mph
4. Safety factor of 5 mph–5 mph
Automobile tow speed50 mph

During winch launches, the winch operator applies full power smoothly and rapidly until the glider reaches an angle of 30° above the horizon. At this point, the operator should start to reduce the power until the glider is about 60° above the horizon where approximately 20 percent power is needed. As the glider reaches the 70° point above the horizon, power is reduced to idle. The winch operator monitors the glider continuously during the climb for any signals to increase or decrease speed from the glider pilot. [Figure 7-18]

Figure 7-18. Winch procedures.
Figure 7-18. Winch procedures.

Crosswind Takeoff and Climb

The following are the main differences between crosswind takeoffs and climb procedures and normal takeoff and climb procedures:

  • During the takeoff roll, the glider tends to weathervane into the wind.
  • After liftoff, the glider drifts toward the downwind side of the runway.
  • In strong crosswinds there is a greater tendency for the glider to drift downwind.
  • If space is available in the takeoff area, the towline or cable should be laid out in a manner that the initial takeoff roll is slightly into the wind to reduce the crosswind component of the glider. [Figure 7-19]
Figure 7-19. Wind correction angle for winch procedures.
Figure 7-19. Wind correction angle for winch procedures.

After lift-off, the glider pilot should establish a wind correction angle toward the upwind side of the runway to prevent drifting downwind. This prevents downwind drift and allows the glider to work upwind of the runway during the climb-out. When the towline is released at the top of the climb, it tends to drift back toward the centerline of the launch runway, as shown in Figure 7-20. This helps keep the towline from fouling nearby wires, poles, fences, aircraft, and other obstacles on the side of the launching runway. Should the glider drift to the downwind side of the runway, the towline could damage other aircraft, runway lights, nearby fences, structures, obstacles, etc.

Figure 7-20. Ground launch crosswind drift correction.
Figure 7-20. Ground launch crosswind drift correction.

Flight Literacy Recommends

Rod Machado's Private Pilot Handbook -Flight Literacy recommends Rod Machado's products because he takes what is normally dry and tedious and transforms it with his characteristic humor, helping to keep you engaged and to retain the information longer. (see all of Rod Machado's Products).
-->

Primary Sidebar

SEARCH FLIGHT LITERACY

Basic Flight Training

Basic Aircraft Flight
Aeronautical Knowledge
Airplane Ownership - General Aviation
Training Aids

Advanced Flight Training

Instrument Flight Rules
Instrument Procedures
Flight Navigation
Aircraft Weight and Balance
Advanced Avionics
Risk Management
Aviation Instructor Training
Glider Flying
Weight-Shift-Control Aircraft
Helicopter Flight Training
Aircraft Mechanic (flight-mechanic.com)

Contact Us | Privacy Policy | Terms of Use
Easy Campfire Recipes | Recipe Workbook


Please help support our work
HIT THE TIP JAR

Copyright © 2023 FlightLiteracy.com




.