The navigation database contained in the FMS must be current if the system is to be used for IFR navigation and approaches. Some units allow en route IFR operations if the navigation waypoints are manually verified by the pilot and accepted. The effective dates for the navigation database are shown on a start-up screen that is displayed as the FMS cycles through its startup self-test. Check these dates to ensure that the navigation database is current. Figure 3-7 shows the start-up screen and effective dates for one popular FMS.

Alternative Means of Navigation
To use some GPS-based RNAV units (those certified under Technical Standard Order (TSO) 129) for IFR flight, an aircraft must also be equipped with an approved and alternate means of IFR navigation (e.g., VOR receiver) appropriate to the flight. Ensure that this equipment is onboard and operational, and that all required checks have been performed (e.g., 30-day VOR check).
The avionics operations manual/handbook should state the certification status of the installed system. The supplements to the AFM should state the status of the installed equipment, including the installed avionics. Most systems require that the advanced avionics manuals be on board as a limitation of use.
Flight Literacy Recommends
Rod Machado's How to Fly an Airplane Handbook – Learn the basic fundamentals of flying any airplane. Make flight training easier, less expensive, and more enjoyable. Master all the checkride maneuvers. Learn the "stick and rudder" philosophy of flying. Prevent an airplane from accidentally stalling or spinning. Land a plane quickly and enjoyably.NOTAMs Relevant to GPS
There are numerous notices to airmen (NOTAMs) that apply specifically to users of navigation aids. For example, when anomalies are observed in the behavior of the global positioning system, or when tests are performed, a GPS UNRELIABLE NOTAM is issued. Similarly, published instrument procedures that rely on RNAV equipment sometimes become “Not Available” when safety concerns arise, such as ground-based interference. It is important to check all NOTAMs prior to IFR flights and, especially, GPS and WAAS NOTAMs before flying. Remember, when talking to a flight service station (FSS)/automated flight service station (AFSS) briefer, you must specifically request GPS/WAAS NOTAMs.
GPS Signal Availability
GPS-based RNAV equipment that uses the DOD GPS relies on adequate signal reception throughout the course of a flight. Signal reception becomes especially critical during instrument approaches when signal reception criteria become more stringent. Signal reception is generally predictable, and you can request information on likely signal reception for the destination airport in the preflight briefing from Flight Service. Many GPS RNAV units include a feature called receiver autonomous integrity monitoring (RAIM) that allows you to view predictions about future signal reception at specific locations. WAAS-enabled receivers do not have this restriction or limitation due to the error corrections available from the WAAS. WAAS is a form of differential GPS (DGPS) providing enhanced position accuracy. Each Wide Area Reference Station (WRS) provides correction data to a Wide Area Master Station (WMS), which computes a grid of correction data to be uplinked to a geostationary satellite (GEO) from a Ground Earth Station (GES). The geostationary satellite transmits the correction data (and also navigation data) to the user on the L1 GPS navigation frequency (1575.42 MHz). The user GPS receiver uses the downlink WAAS data to correct received navigation data. The goal of WAAS is to obtain at least a 7-meter horizontal and vertical accuracy.
Local Area Augmentation System (LAAS), when it becomes available, is another DGPS mode which is designed to provide 1-meter accuracy for precision approaches. It uses a local error VHF transmitter near the runway providing a direct link from the sensor to the aircraft GPS receiver.
Alternate Airports
It is very important to know what equipment is installed in the aircraft. GPS-based FMS/RNAV units certified to TSO-C145A or TSO-146A may be used when an alternate airport is required in the flight plan for the approaches at the destination and alternate airport if the WAAS is operational. No other navigation avionics would be required. Units certified under TSO-C129 are not authorized for alternate approach requirements. The aircraft must have stand-alone navigation equipment, such as VOR, and there must be an approved instrument approach at the alternate airport based on that equipment. (However, once diverted to the alternate airport, the pilot could fly a GPS-based approach there, as long as there is an operational, ground-based navaid and airborne receiver in the aircraft for use as a backup.)
Aircraft Equipment Suffixes
Since air traffic control (ATC) issues clearances based on aircraft equipment suffixes, consult the Aeronautical Information Manual (AIM) Table 5-1-2, Aircraft Suffixes, to ensure that the flight plan includes the correct equipment suffix for a particular aircraft. Use the suffix that corresponds to the services and/or routing that is needed. For example, if the desired route or procedure requires GPS, file the suffix as “/G” or “/L,” as appropriate to that aircraft, and operational equipment installed. (Remember that minimum equipment list (MEL) deferred items can change the status of the aircraft.)
Suitability of an RNAV Unit for VFR Flight
Even when an RNAV receiver is to be used only for supplemental (“supplemental” meaning a situation enhancing source of navigation information, but not the primary or sole source of navigation information) navigation information during VFR flight, you should consider these suitability factors in the interest of safety. The use of an expired navigation database might cause you to stray into airspace that was not yet designated at the time the expired navigation database was published. Some VFR-only GPS units do not alert you when signal reception has faded, which could lead to reliance on erroneous position information. Lack of attention to the “see and avoid” basic principle of every visual meteorological conditions (VMC) flight means too much time spent focused inside the cockpit on advanced avionics versus staying synchronized with the flight events, possibly creating a life-threatening total flight situation.
Programming the Flight Route
The procedures used to program an FMS with your intended route of flight are fundamentally the same in all types of systems, yet many differences are evident. The primary difference between systems lies mainly in the “knob or switchology”—the specific design features, operational requirements, and layout of the controls and displays used to operate the avionics. Be thoroughly familiar with the procedures required for each FMS or RNAV unit to be used.
Suppose you have planned a flight from San Carlos Airport (KSQL) to Oakdale Airport (O27), as shown in the flight plan appearing in Figure 3-8. The planned route proceeds directly to SUNOL intersection, then follows V195 until reaching ECA, the initial approach fix for the GPS Runway 10 approach into Oakdale. The distances, bearings, estimated times en route, and fuel requirements for the flight have all been calculated. The next step is to enter some of these details into the FMS.

Flight Literacy Recommends
