Normal Takeoff (Part Two)

Initial Climb

Upon lift-off, the airplane should be flying at approximately the pitch attitude that allows it to accelerate to VY. This is the speed at which the airplane gains the most altitude in the shortest period of time.

If the airplane has been properly trimmed, some back-elevator pressure may be required to hold this attitude until the proper climb speed is established. Relaxation of any back-elevator pressure before this time may result in the airplane settling, even to the extent that it contacts the runway.


The airplane’s speed will increase rapidly after it becomes airborne. Once a positive rate of climb is established, the pilot should retract the flaps and landing gear (if equipped). It is recommended that takeoff power be maintained until reaching an altitude of at least 500 feet above the surrounding terrain or obstacles. The combination of VY and takeoff power assures the maximum altitude gained in a minimum amount of time. This gives the pilot more altitude from which the airplane can be safely maneuvered in case of an engine failure or other emergency. A pilot should also consider flying at Vy versus a lower pitch for a cruise climb requires much quicker pilot response in the event of a powerplant failure to preclude a stall.

Since the power on the initial climb is set at the takeoff power setting, the airspeed must be controlled by making slight pitch adjustments using the elevators. However, the pilot should not fixate on the airspeed indicator when making these pitch changes, but should continue to scan outside to adjust the airplane’s attitude in relation to the horizon. In accordance with the principles of attitude flying, the pilot should first make the necessary pitch change with reference to the natural horizon and hold the new attitude momentarily, and then glance at the airspeed indicator to verify if the new attitude is correct. Due to inertia, the airplane will not accelerate or decelerate immediately as the pitch is changed. It takes a little time for the airspeed to change. If the pitch attitude has been over or under corrected, the airspeed indicator will show a speed that is higher or lower than that desired. When this occurs, the cross-checking and appropriate pitch-changing process must be repeated until the desired climbing attitude is established. Pilots must remember the climb pitch will be lower when the airplane is heavily loaded, or power is limited by density altitude.

When the correct pitch attitude has been attained, the pilot should hold it constant while cross-checking it against the horizon and other outside visual references. The airspeed indicator should be used only as a check to determine if the attitude is correct.

After the recommended climb airspeed has been established and a safe maneuvering altitude has been reached, the pilot should adjust the power to the recommended climb setting and trim the airplane to relieve the control pressures. This makes it easier to hold a constant attitude and airspeed.

During initial climb, it is important that the takeoff path remain aligned with the runway to avoid drifting into obstructions or into the path of another aircraft that may be taking off from a parallel runway. A flight instructor should help the student identify two points inline ahead of the runway to use as a tracking reference. As long as those two points are inline, the airplane is remaining on the desired track. Proper scanning techniques are essential to a safe takeoff and climb, not only for maintaining attitude and direction, but also for avoiding collisions near the airport.


When the student pilot nears the solo stage of flight training, it should be explained that the airplane’s takeoff performance will be much different when the instructor is not in the airplane. Due to decreased load, the airplane will become airborne earlier and climb more rapidly. The pitch attitude that the student has learned to associate with initial climb may also differ due to decreased weight, and the flight controls may seem more sensitive. If the situation is unexpected, it may result in increased tension that may remain until after the landing. Frequently, the existence of this tension and the uncertainty that develops due to the perception of an “abnormal” takeoff results in poor performance on the subsequent landing.

Common errors in the performance of normal takeoffs and departure climbs are:

  • Failure to review AFM/POH and performance charts prior to takeoff.
  • Failure to adequately clear the area prior to taxiing into position on the active runway.
  • Abrupt use of the throttle.
  • Failure to check engine instruments for signs of malfunction after applying takeoff power.
  • Failure to anticipate the airplane’s left turning tendency on initial acceleration.
  • Overcorrecting for left turning tendency.
  • Relying solely on the airspeed indicator rather than developing an understanding of visual references and tracking clues of airplane airspeed and controllability during acceleration and lift-off.
  • Failure to attain proper lift-off attitude.
  • Inadequate compensation for torque/P-factor during initial climb resulting in a sideslip.
  • Overcontrol of elevators during initial climb-out and lack of elevator trimming.
  • Limiting scan to areas directly ahead of the airplane (pitch attitude and direction), causing a wing (usually the left) to drop immediately after lift-off.
  • Failure to attain/maintain best rate-of-climb airspeed (VY) or desired climb airspeed.
  • Failure to employ the principles of attitude flying during climb-out, resulting in “chasing” the airspeed indicator.

Flight Literacy Recommends

Rod Machado's Private Pilot Handbook -Flight Literacy recommends Rod Machado's products because he takes what is normally dry and tedious and transforms it with his characteristic humor, helping to keep you engaged and to retain the information longer. (see all of Rod Machado's Products).