Preflight Assessment of the Aircraft – Landing Gear, Tires, and Brakes

Landing Gear, Tires, and Brakes

The landing gear, tires, and brakes allow the airplane to maneuver from and return to the ramp, taxiway, and runway environment in a precise and controlled manner. The landing gear, tires, and brakes must be inspected to ensure that the airplane can be positively controlled on the ground. Landing gear on airplanes varies from simple fixed gear to complex retractable gear systems.


Fixed landing gear is a gear system in which the landing gear struts, tires, and brakes are exposed and lend themselves to relatively simple inspection. However, more complex airplanes may have retractable landing gear with multiple tires per landing gear strut, landing gear doors, over-center locks, springs, and electrical squat switches. Regardless of the system, it is imperative that the pilot follow the AFM/POH in inspecting that the landing gear is ready for operation.

On many fixed-gear airplanes, inspection of the landing gear system can be hindered by wheel pants, which are covers used to reduce aerodynamic drag. It is still the pilot’s responsibility to inspect the airplane properly. A flashlight helps the pilot in peering into covered areas. On low-wing airplanes, covered or retraceable landing gear presents additional effort required to crouch below the wing to properly inspect the landing gear.

The following provides guidelines for inspecting the landing gear system; however, the AFM/POH must be the pilot’s reference for the appropriate procedures.

  • The pilot, when approaching the airplane, should look at the landing gear struts and the adjacent ground for leaking hydraulic fluid that may be coming from struts, hydraulic lines from landing gear retraction pumps, or from the braking system. Landing gear should be relatively free from grease, oil, and fluid without any undue amounts. Any amount of leaking fluid is unacceptable. In addition, an overview of the landing gear provides an opportunity to verify landing gear alignment and height consistency.
  • All landing gear shock struts should also be checked to ensure that they are properly inflated, clean, and free from hydraulic fluid and damage. All axles, links, collars, over-center locks, push rods, forks, and fasteners should be inspected to ensure that they are free from cracks, corrosion, rust, and determined to be airworthy.
  • Tires should be inspected for proper inflation, an acceptable level of remaining tread, and normal wear pattern. Abnormal wear patterns, sidewall cracks, and damage, such as cuts, bulges, imbedded foreign objects, and visible cords, render the tire unairworthy.
  • Wheel hubs should be inspected to ensure that they are free from cracks, corrosion, and rust, that all fasteners are secure, and that the air valve stem is straight, capped, and in good condition.
  • Brakes and brake systems should be checked to ensure that they are free from rust and corrosion and that all fasteners and safety wires are secure. Brake pads should have a proper amount of material remaining and should be secure. All brake lines should be secure, dry, and free of signs of hydraulic leaks, and devoid of abrasions and deep cracking.
  • On tricycle gear airplanes, a shimmy damper is used to damp oscillations of the nose gear and must be inspected to ensure that they are securely attached, are free of hydraulic fluid leaks, and are in overall good condition. Some shimmy dampeners do not use hydraulic fluid and instead use an elastomeric compound as the dampening medium. Nose gear links, collars, steering rods, and forks should be inspected to ensure the security of fasteners, minimal free play between torque links, crack-free components, and for proper servicing and general condition.
  • On some conventional gear airplanes, those airplanes with a tailwheel or skid, the main landing gear may have bungee cords to help in absorbing landing loads and shocks. The bungee cords must be inspected for security and condition.
  • Where the landing gear transitions into the airplane’s structure, the pilot should inspect the attachment points and the airplane skin in the adjacent area—the pilot needs to inspect for wrinkled or other damaged skin, loose bolts, and rivets and verify that the area is free from corrosion.