• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

Flight Literacy

Flight Training Educational Materials

  • Home
  • Basic Flight Training
    • Basic Aircraft Flight
    • Aeronautical Knowledge
    • Airplane Ownership – General Aviation Information
  • Advanced Flight Training
    • Instrument Flight Rules
    • Instrument Procedures
    • Flight Navigation
    • Aircraft Weight and Balance
    • Advanced Avionics
    • Risk Management
    • Aviation Instructor Training
    • Glider Flying
    • Weight-Shift Control Aircraft Flight
    • Helicopter Flight Training
    • Advisory Circulars
  • Training Aids
  • Tip Jar
You are here: Home / Weight-Shift Control Aircraft Flight / WSC Aerodynamics / Weight, Load, Speed and Basic Propeller Principles

Weight, Load, Speed and Basic Propeller Principles

Filed Under: WSC Aerodynamics

Weight, Load, and Speed

Similar to airplanes, sailplanes, and PPCs, increasing weight creates increases in speed and descent rate. However, the WSC aircraft has a unique characteristic. Adding weight to a WSC aircraft creates more twist in the wing because the outboard leading edges flex more. With less lift at the tips, a nose-up effect is created and the trim speed lowers.

Therefore, adding weight can increase speed similar to other aircraft, but reduce the trim speed because of the increased twist unique to the WSC aircraft. Each manufacturer’s make/model has different effects depending on the specific design. As described in the Pilot’s Handbook of Aeronautical Knowledge, the stall speed increases as the weight or loading increases so some manufacturers may have specific carriage/ wing hang point locations for different weights. Some require CG locations to be forward for greater weights so the trim speed is well above the stall speed for the wing.

WSC aircraft have the same forces as airplanes during normal coordinated turns. Greater bank angles result in greater resultant loads. The flight operating strength of an aircraft is presented on a graph whose horizontal scale is based on load factor. The diagram is called a VG diagram—velocity versus “G” loads or load factor. Each aircraft has its own VG diagram which is valid at a certain weight and altitude. See the Pilot’s Handbook of Aeronautical Knowledge for more details on the VG diagram. Load factors are also similar to the VG diagram applicable to WSC.

Basic Propeller Principles

The WSC aircraft propeller principles are similar to those found in the Pilot’s Handbook of Aeronautical Knowledge, except there is no “corkscrewing effect of the slipstream” and there is less P-factor because the carriage is generally flying with the thrust line parallel to the relative wind. The wing acts independently, raising and lowering the AOA and speed. This was introduced at the beginning of this chapter when angle of incidence was defined.

The torque reaction does have a noticeable effect on the WSC aircraft. With the typical left-hand turn tendency (for right hand turning propellers), turns are not typically built into the wing. As in airplanes, some cart designs point the engine down and to the right. Others do not make any adjustment, and the pilot accounts for the turning effect through pilot input.

It should be noted that many of the two-stroke propellers turn to the right, as do conventional airplanes. However, many four-stroke engine propellers turn to the left, creating a right-hand turn. Consult the POH for the torque characteristics of your specific aircraft.

Flight Literacy Recommends

Rod Machado's Private Pilot Handbook -Flight Literacy recommends Rod Machado's products because he takes what is normally dry and tedious and transforms it with his characteristic humor, helping to keep you engaged and to retain the information longer. (see all of Rod Machado's Products).

-->

Primary Sidebar

SEARCH FLIGHT LITERACY

Basic Flight Training

Basic Aircraft Flight
Aeronautical Knowledge
Airplane Ownership - General Aviation
Training Aids

Advanced Flight Training

Instrument Flight Rules
Instrument Procedures
Flight Navigation
Aircraft Weight and Balance
Advanced Avionics
Risk Management
Aviation Instructor Training
Glider Flying
Weight-Shift-Control Aircraft
Helicopter Flight Training
Aircraft Mechanic (flight-mechanic.com)

Contact Us | Privacy Policy | Terms of Use
Easy Campfire Recipes | Recipe Workbook


Please help support our work
HIT THE TIP JAR

Copyright © 2022 FlightLiteracy.com




.